AUTHOR INDEX FOR VOLUME 24

A

Abell, Creed W. See Denney, Fritz, Patel, and Widen, 60

Ahotupa, Markku, and Mäntylä, Eero. Adipose Tissue Content as a Modifier of the Tissue Distribution, Biological Effects, and Excretion of a Hexachlorobiphenyl in C57BL/6J and DBA/JBOMf Mice. 464

Aktories, Klaus, Schultz, Günter, and Jakobs, Karl H. Somatostatin-Induced Stimulation of a High-Affinity GTPase in Membranes of S49 Lymphoma cyc⁻ and H21a Variants, 183

Alberts, Pēteris. See Nordström, Westlind, Undén, and Bartfai, 1 Alexander, R. Wayne. See Wright, Eckstein, and Gimbrone, 213 Alley, Michael C. See Brimijoin and Mintz, 513

Ames, Matthew M. See Woodson, Selassie, Hansch, and Weinshilboum, 471

Anderson, D.C.

King, Steven C., and Parsons, Stanley M. Inhibition of [3H]
Acetylcholine Active Transport by Tetraphenylborate and Other
Anions. 55

King, Steven C., and Parsons, Stanley M. Pharmacological Characterization of the Acetylcholine Transport System in Purified *Torpedo* Electric Organ Synaptic Vesicles, 48

Anderson, Leojean. See Schellenberg and Swanson, 251

B

Barrett, A. N., Roberts, G. C. K., Burgen, A. S. V., and Clore, G. M. Ab Initio Molecular Orbital Calculations of Electron Distribution in Tetramethylammonium Ion, 443

Bartfai, Tamas. See Nordström, Alberts, Westlind, and Undén, 1
 Battaglia, George, Shannon, Michael, and Titeler, Milt. Initial
 Detection of [⁸H]Prazosin-Labeled Alpha₁-Receptors in the Porcine Pituitary Neurointermediate Lobe, 409

Baudry, Michel

Kramer, Kathryn, Fagni, Laurent, Recasens, Max, and Lynch, Gary. Classification and Properties of Acidic Amino Acid Receptors in Hippocampus. II. Biochemical Studies Using a Sodium Efflux Assav. 222

Kramer, Kathryn, and Lynch, Gary. Classification and Properties of Acidic Amino Acid Receptors in Hippocampus. III. Supersensitivity during the Postnatal Period and following Denervation, 229

Beck, William T., Cirtain, Margaret C., and Lefko, Janet L.
 Energy-Dependent Reduced Drug Binding as a Mechanism of Vinca Alkaloid Resistance in Human Leukemic Lymphoblasts, 485
 Beerman, Terry. See Rauscher and Mueller, 97

Belt, Judith A. Heterogeneity of Nucleoside Transport in Mammalian Cells: Two Types of Transport Activity in L1210 and Other Cultured Neoplastic Cells, 479

Birkett, Donald J. See Wanwimolruk and Brooks, 458

Blount, John F., Fryer, R. Ian, Gilman, Norman W., and Todaro, Louis J. Quinazolines and 1,4-benzodiazepines. 92. Conformational Recognition of the Receptor by 1,4-Benzodiazepines, 425

Bockaert, Joël. See Sladeczek and Mauger, 392

Borowski, E. See Cybulska, Ziminski, and Gary-Bobo, 270

Bouchard, Jacques, and Momparler, Richard L. Incorporation of 5-Aza-2'-Deoxycytidine-5'-triphosphate into DNA: Interactions with Mammalian DNA Polymerase α and DNA Methylase, 109

Brimijoin, Stephen, Mintz, Keith P., and Alley, Michael C. Production and Characterization of Separate Monoclonal Antibodies to Human Acetylcholinesterase and Butyrylcholinesterase, 513

Brooks, Peter M. See Wanwimolruk and Birkett, 458 Brown, Joan Heller

See Dunlap, 15 See Heller, 351 Brown, Susan L., and Brown, Joan Heller. Muscarinic Stimulation of Phosphatidylinositol Metabolism in Atria, 351

Burgen, A. S. V. See Barrett, Roberts, and Clore, 443 Bylund, David B. See Forte and Zahler, 42

C

Camus, J. C. See Waelbroeck, Taton, Delhaye, Chatelain, Pochet, Leclerc, De Smet, Robberecht, and Christophe, 174

Cantoni, Orazio

and Costa, Max. Correlations of DNA Strand Breaks and Their Repair with Cell Survival following Acute Exposure to Mercury(II) and X-Rays, 84

See Evans, Patierno, Wang, and Costa, 77 Catto, Brian A. See Tracy and Webster, 291

Chatelain, P.

See Robberecht, Delhaye, Taton, De Neef, Waelbroeck, De Smet, Leclerc, and Christophe, 169

See Waelbroeck, Taton, Delhaye, Camus, Pochet, Leclerc, De Smet, Robberecht, and Christophe, 174

Chow, Thomas, and Zukin, Suzanne. Solubilization and Preliminary Characterization of Mu and Kappa Opiate Receptor Subtypes from Rat Brain, 203

Christophe, J

See Robberecht, Delhaye, Taton, De Neef, Waelbroeck, De Smet, Leclerc, and Chatelain, 169

See Waelbroeck, Taton, Delhaye, Chatelain, Camus, Pochet, Leclerc, De Smet, and Robberecht, 174

Cirtain, Margaret C. See Beck and Lefko, 485

Clore, G. M. See Barrett, Roberts, and Burgen, 443

Colombo, Ambrogio. See Gambetta, Lanzi, and Zunino, 336

Conney, Allan H. See Miller, Huang, and Jeffrey, 137

Costa, Max See Cantoni, 84

See Evans, Patierno, Wang, and Cantoni, 77

Costa, Erminio

See Onali, Eva, Olianas, and Schwartz, 189

See Onali, Olianas, and Schwartz, 380

Croft, Jane E. See Robertson, Serabjit-Singh, and Philpot, 156

Cybulska, B., Ziminski, T., Borowski, E., and Gary-Bobo, C. M. The Influence of Electric Charge of Aromatic Heptaene Macrolide Antibiotics on Their Activity on Biological and Lipidic Model Membranes, 270

D

Delhaye, M.

See Robberecht, Taton, De Neef, Waelbroeck, De Smet, Leclerc, Chatelain, and Christophe, 169

See Waelbroeck, Taton, Chatelain, Camus, Pochet, Leclerc, De Smet, Robberecht, and Christophe, 174

De Neef, P. See Robberecht, Delhaye, Taton, Waelbroeck, De Smet, Leclerc, Chatelain, and Christophe, 169

Denney, Richard M., Fritz, Richard R., Patel, Nutan T., Widen, Steven G., and Abell, Creed W. Use of a Monoclonal Antibody for Comparative Studies of Monoamine Oxidase B in Mitochondrial Extracts of Human Brain and Peripheral Tissues, 60

De Smet, J. M.

See Robberecht, Delhaye, Taton, De Neef, Waelbroeck, Leclerc, Chatelain, and Christophe, 169

See Waelbroeck, Taton, Delhaye, Chatelain, Camus, Pochet, Leclerc, Robberecht, and Christophe, 174

Drewes, Lester R. See Zeleznikar and Quist, 163

Dubé, Christopher E. See Murray, Wilkinson, and Marcus, 129

0026-895X/83/060533-04\$02.00/0
Copyright © 1983 by The American Society for Pharmacology and Experimental Therapeutics.
All rights of reproduction in any form reserved.

Duch, David S., Lee, Ching-Lun Lee, Edelstein, Mark P., and Nichol, Charles A. Biosynthesis of Tetrahydrobiopterin in the Presence of Dihydrofolate Reductase Inhibitors, 103

Dunlap, Janet, and Brown, Joan Heller. Heterogeneity of Binding Sites on Cardiac Muscarinic Receptors Induced by the Neuromuscular Blocking Agents Gallamine and Pancuronium, 15

E

Eckstein, Laurie S. See Wright, Alexander, and Gimbrone, 213 Edelstein, Mark P. See Duch, Lee, and Nichol, 103

Erickson, Leonard C. See Tew, White, Wang, Schein, and Hartley-Asp, 324

Eva, Carola. See Onali, Olianas, Schwartz, and Costa, 189

Evans, R. Mark, Patierno, Steven R., Wang, De-Shin, Cantoni, Orazio, and Costa, Max. Growth Inhibition and Metallothionen Induction in Cadmium-Resistant Cells by Essential and Non-Essential Metals. 77

Eyer, Peter, Lierheimer, Elisabeth, and Strosar, Mira. Site and Mechanism of Covalent Binding of 4-Dimethylaminophenol to Human Hemoglobin, and Its Implications to the Functional Properties, 282

I

Fagni, Laurent. See Baudry, Kramer, Recasens, and Lynch, 222 Fairhurst, Alan S. See Thayer, 6

Fischer, Paul H., Murphy, David G., and Kawahara, Rodney.

Preferential Inhibition of 5-Trifluoromethyl-2'-Deoxyuridine
Phosphorylation by 5'-Amino-5'-Deoxythymidine in Uninfected
versus Herpes Simplex Virus-Infected Cells, 90

Flaim, Kathryn E., Jefferson, Leonard S., McGwire, Joan B., and Rannels, D. Eugene. Effect of Halothane on Synthesis and Secretion of Liver Proteins, 277

Florio, Vincent A., and Ross, Elliott M. Regulation of the Catalytic Component of Adenylate Cyclase: Potentiative Interaction of Stimulatory Ligands and 2',5'-Dideoxyadenosine, 195

Forte, Leonard R., Bylund, David B., and Zahler, Warren L. Forskolin Does Not Activate Sperm Adenylate Cyclase, 42

Fraser, Claire M. See Lilly, Jung, Seeman, and Venter, 10

Fritz, Richard R. See Denney, Patel, Widen, and Abell, 60

Froimowitz, Mark, and Matthysse, Steven. Conformational Properties of Butaclamol and Isobutaclamol: Regularities in the Structures of Semirigid Neuroleptics, 243

Fryer, R. Ian. See Blount, Gilman, and Todaro, 425

Fyfe, James A., McKee, Susan A., and Keller, Paul M. Thymidine-Thymidylate Kinases from Strains of Herpes Simplex Virus with Modified Drug Sensitivities to Acyclovir and (E)-5-(2-Bromovinyl)-2'-deoxyuridine, 316

G

Gambetta, Romolo A., Colombo, Ambrogio, Lanzi, Cinzia, and Zunino, Franco. Purification and Partial Characterization of a Daunorubicin-Binding Protein from Rat Liver, 336

Gans, Joseph H. See Mulcahy, 329

Gary-Bobo, C. M. See Cybulska, Ziminski, and Borowski, 270

Gilman, Norman W. See Blount, Fryer, and Todaro, 425

Gimbrone, Michael A., Jr. See Wright, Alexander, and Eckstein,

Glazer, Robert I.

and Hartman, Kathleen D. In Vitro Translational Activity of Messenger RNA following Treatment of Human Colon Carcinoma Cells with Sangivamycin, 509

Hartman, Kathleen D., and Knode, Marian C. 9-Deazaadenosine: Cytocidal Activity and Effects on Nucleic Acids and Protein Synthesis in Human Colon Carcinoma Cells in Culture, 309

Goldblum, Amiram. Structure-Activity Relationships of Cholinesterase Inhibitors. I. Quantum Mechanical Study of Affinities of Phenyl N-Methyl Carbamates, 436

Goodman, M. See Rosenkranz, Hoffman, Jacobson, Verlander, Klevans, O'Donnell, and Melmon, 429 F

Haga, Tatsuya. See Nukada and Ichiyama, 366, 374

Hansch, Corwin. See Woodson, Ames, Selassie, and Weinshilboum,
471

Hartley-Asp, Beryl. See Tew, Erickson, White, Wang, and Schein, 324

Hartman, Kathleen D.

See Glazer, 509

See Glazer and Knode, 309

Henis, Yoav I., and Sokolovsky, Mordechai. Muscarinic Antagonists Induce Different Receptor Conformations in Rat Adenohypophysis, 357

Herbette, L., Katz, A. M., and Sturtevant, J. M. Comparisons of the Interaction of Propranolol and Timolol with Model and Biological Membrane Systems, 259

Hoffman, B. B. See Rosenkranz, Jacobson, Verlander, Klevans, O'Donnell, Goodman, and Melmon, 429

Hom, D. S. See Law and Loh, 413

Huang, Mou-Tuan. See Miller, Jeffrey, and Conney, 137

I

Ichiyama, Arata. See Nukada and Haga, 366, 374
Ishii, Kenji. See Kamataki, Maeda, Yamazoe, Matsuda, and Kato,
146

J

Jacobs, Robert S.

See O'Brien and Wilson, 493

See White, 500

Jacobson, K. A. See Rosenkranz, Hoffman, Verlander, Klevans, O'Donnell, Goodman, and Melmon, 429

Jakobs, Karl H. See Aktories and Schultz, 183

Jefferson, Leonard S. See Flaim, McGwire, and Rannels, 277

Jeffrey, Alan M. See Miller, Huang, and Conney, 137

Jerina, Donald M. See Vyas, van Bladeren, Thakker, Yagi, Sayer, and Levin, 115

Jung, Chan Y. See Lilly, Fraser, Seeman, and Venter, 10

K

Kador, Peter F., and Sharpless, Norman E. Pharmacophor Requirements of the Aldose Reductase Inhibitor Site, 521

Kamataki, Tetsuya, Maeda, Kaori, Yamazoe, Yasushi, Matsuda, Naomi, Ishii, Kenji, and Kato, Ryuichi. A High-Spin Form of Cytochrome P-450 Highly Purified from Polychlorinated Biphenyl-Treated Rats: Catalytic Characterization and Immunochemical Quantitation in Liver Microsomes, 146

Kato, Ryuichi. See Kamataki, Maeda, Yamazoe, Matsuda, and Ishii, 146

Katz, A. M. See Herbette and Sturtevant, 259

Kawahara, Rodney. See Fischer and Murphy, 90

Kellar, Kenneth J. See Schwartz, 387

Keller, Paul M. See Fyfe and McKee, 316

King, Steven C. See Anderson and Parsons, 48, 55

Klevans, L. See Rosenkranz, Hoffman, Jacobson, Verlander, O'Donnell, Goodman, and Melmon, 429

Knode, Marian C. See Glazer and Hartman, 309

Kouakou, Yao. See Meunier, Puget, and Moisand, 23

Kramer, Kathryn. See Baudry and Lynch, 229

See Baudry, Fagni, Recasens, and Lynch, 222

Kuhar, Michael J. See Zarbin, Palacios, and Wamsley, 341

L

Lanzi, Cinzia. See Gambetta, Colombo, and Zunino, 336

Law, P. Y., Hom, D. S., and Loh, H. H. Opiate Receptor Down-Regulation and Desensitization in Neuroblastoma × Glioma NH108-15 Hybrid Cells Are Two Separate Cellular Adaptation Processes, 413

Leclerc, J. L.

See Robberecht, Delhaye, Taton, De Neef, Waelbroeck, De Smet,

Chatelain, and Christophe, 169

See Waelbroeck, Taton, Delhaye, Chatelain, Camus, Pochet, De Smet, Robberecht, and Christophe, 174

Lee, Ching-Lun Lee. See Duch, Edelstein, and Nichol, 103

Lefko, Janet L. See Beck and Cirtain, 485

Levin, Wayne. See Vyas, van Bladeren, Thakker, Yagi, Sayer, and Jerina, 115

Lierheimer, Elisabeth. See Eyer and Strosar, 282

Lilly, Leslie, Fraser, Claire M., Jung, Chan Y., Seeman, Philip, and Venter, J. Craig. Molecular Size of the Canine and Human Brain D₂ Dopamine Receptor as Determined by Radiation Inactivation. 10

Loh, H. H. See Law and Hom, 413

Lucier, George W. See Thompson, 69

Lynch, Gary

See Baudry and Kramer, 229

See Baudry, Kramer, Fagni, and Recasens, 222

M

Maeda, Kaori. See Kamataki, Yamazoe, Matsuda, Ishii, and Kato,

Makar, A. B., and Tephly, T. R. Effect of Nitrous Oxide and Methonine Treatments on Hepatic S-Adenosylmethionine and Methylation Reactions in the Rat, 124

Mäntylä, Eero. See Ahotupa, 464

Marcus, Craig. See Murray, Wilkinson, and Dubé, 129

Matsuda, Yasushi. See Kamataki, Maeda, Yamazoe, Ishii, and Kato. 146

Matthysse, Steven. See Froimowitz, 243

Mauger, Jean-Pierre. See Sladeczek and Bockaert, 392

McGwire, Joan B. See Flaim, Jefferson, and Rannels, 277

McKee, Susan A. See Fyfe and Keller, 316

Melmon, K. L. See Rosenkranz, Hoffman, Jacobson, Verlander, Klevans, O'Donnell, and Goodman, 429

Meunier, Jean-Claude, Kouakou, Yao, Puget, Alain, and Moisand, Christiane. Multiple Opiate Binding Sites in the Central Nervous System of the Rabbit: Large Predominance of a *Mu* Subtype in the Cerebellum and Characterization of a *Kappa* Subtype in the Thalamus, 23

Miller, Jerry R., Silver, Paul J., and Stull, James T. The Role of Myosin Light Chain Kinase Phosphorylation in *Beta*-Adrenergic Relaxation of Tracheal Smooth Muscle, 235

Miller, Mark Steven, Huang, Mou-Tuan, Jeffrey, Alan M., and Conney, Allan H. Betamethasone-Mediated Activation of Biphenyl 2-Hydroxylation in Rat Liver Microsomes: Studies on Possible Mechanisms, 137

Mintz, Keith P. See Brimijoin and Alley, 513

Moisand, Christiane. See Meunier, Kouakou, and Puget, 23

Molinoff, Perry B. See Pittman, 398

Momparler, Richard L. See Bouchard, 109

Mueller, Gail. See Rauscher and Beerman, 97

Mulcahy, Linda S., and Gans, Joseph H. The Fidelity of Mouse Liver Mitochondrial DNA Polymerase following Long-Term Administration of Carbon Tetrachloride, Diethylnitrosamine, or Phenobarbitol, 329

Murphy, David G. See Fischer and Kawahara, 90

Murray, Michael, Wilkinson, Christopher F., Marcus, Craig, and Dubé, Christopher E. Structure-Activity Relationships in the Interactions of Alkoxymethylenedioxybenzene Derivatives with Rat Hepatic Microsomal Mixed-Function Oxidases in Vivo, 129

N

Nichol, Charles A. See Duch, Lee, and Edelstein, 103

Nordström, Öie, Alberts, Pēteris, Westlind, Anita, Undén, Anders, and Bartfai, Tamas. Presynaptic Antagonist-Postsynaptic Agonist at Muscarinic Cholinergic Synapses: N-Methyl-N-(1-methyl-4-pyrrolidino-2-butynyl)acetamide, 1

Nukada, Toshihide

Haga, Tatsuya, and Ichiyama, Arata. Muscarinic Receptors in

Porcine Caudate Nucleus. I. Enhancement by Nickel and Other Cations of [³H]cis-Methyldioxolane Binding to Guanyl Nucleotide-Sensitive Sites. 366

Haga, Tatsuya, and Ichiyama, Arata. Muscarinic Receptors in Porcine Caudate Nucleus. II. Different Effects of N-Ethylmaleimide on [3H]cis-Methyldioxolane Binding to Heat-Labile (Guanyl Nucleotide-Sensitive) Sites and Heat-Stable (Guanyl Nucleotide-Insensitive) Sites, 374

0

O'Brien, E. Timothy, Jacobs, Robert S., and Wilson, Leslie. Inhibition of Bovine Brain Microtubule Assembly in Vitro by Stypoldione, 493

O'Donnell, M. See Rosenkranz, Hoffman, Jacobson, Verlander, Klevans, Goodman, and Melmon, 429

Olianas, Maria C.

See Onali, Eva, Schwartz, and Costa, 189

See Onali, Schwartz, and Costa, 380

Onali, Pierluigi

Eva, Carola, Olianas, Maria C., Schwartz, Joan P., and Costa, Erminio. In GH₃ Pituitary Cells, Acetylcholine and Vasoactive Intestinal Peptide Antagonistically Modulate Adenylate Cyclase, Cyclic AMP Content, and Prolactin Secretion, 189

Olianas, Maria C., Schwartz, Joan P., and Costa, Erminio. Involvement of a High-Affinity GTPase in the Inhibitory Coupling of Striatal Muscarinic Receptors to Adenylate Cyclase, 380

P

Palacios, Jose M. See Zarbin, Wamsley, and Kuhar, 341
Palatini, P. The Interaction between Full and Partial Inhibitors Acting
on a Single Enzyme: A Theoretical Analysis, 30

Parsons, Stanley M. See Anderson and King, 48, 55

Patel, Nutan T. See Denney, Fritz, Widen, and Abell, 60

Patierno, Steven R. See Evans, Wang, Cantoni, and Costa, 77

Philpot, Richard M. See Robertson, Serabjit-Singh, and Croft, 156

Pittman, Randall N., and Molinoff, Perry B. Interactions of Full and Partial Agonists with *Beta*-Adrenergic Receptors on Intact L6 Muscle Cells, 398

Pochet, R. See Waelbroeck, Taton, Delhaye, Chatelain, Camus, Leclerc, De Smet, Robberecht, and Christophe, 174

Puget, Alain. See Meunier, Kouakou, and Moisand, 23

Q

Quist, Eugene E. See Zeleznikar and Drewes, 163

R

Rannels, D. Eugene. See Flaim, Jefferson, and McGwire, 277
Rauscher, Frank, III, Mueller, Gail, and Beerman, Terry. The
Effects of the Antitumor Protein Auromomycin on HeLa S₃ Nuclei:
Release of Soluble Chromatin, 97

Recasens, Max. See Baudry, Kramer, Fagni, and Lynch, 222 Robberecht, P.

Delhaye, M., Taton, G., De Neef, P., Waelbroeck, M., De Smet, J. M., Leclerc, J. L., Chatelain, P., and Christophe, J. The Human Heart *Beta*-Adrenergic Receptors. I. Heterogeneity of the Binding Sites: Presence of 50% *Beta*₁-and 50% *Beta*₂-Adrenergic Receptors, 169

See Waelbroeck, Taton, Delhaye, Chatelain, Camus, Pochet, Leclerc, De Smet, and Christophe, 174

Roberts, G. C. K. See Barrett, Burgen, and Clore, 443

Robertson, Iain G. C., Serabjit-Singh, Cosette, Croft, Jane E., and Philpot, Richard M. The Relationship between Increases in the Hepatic Content of Cytochrome P-450, Form 5, and in the Metabolism of Aromatic Amines to Mutagenic Products following Treatment of Rabbits with Phenobarbital, 156

Rosenkranz, R. P., Hoffman, B. B., Jacobson, K. A., Verlander, M. S., Klevans, L., O'Donnell, M., Goodman, M., and Melmon, K. L. Conjugates of Catecholamines. II. In Vitro and in Vivo Rosenkranz, R. P.—Continued

Pharmacological Activity of N-Alkyl-Functionalized Carboxylic Acid Congeners and Amides Related to Isoproterenol, 429

Ross, Elliott M. See Florio, 195

Roth, Robert A. See Wiersma, 300

S

Sayer, Jane M. See Vyas, van Bladeren, Thakker, Yagi, Levin, and Jerina. 115

Schein, Philip S. See Tew, Erickson, White, Wang, and Hartley-Asp, 324

Schellenberg, Gerard D., Anderson, Leojean, and Swanson, Phillip D. Inhibition of Na⁺-Ca²⁺ Exchange in Rat Brain by Amiloride, 251

Schultz, Günter See Aktories and Jakobs, 183

Schwartz, Joan P.

See Onali, Eva, Olianas, and Costa, 189

See Onali, Olianas, and Costa, 380

Schwartz, Rochelle D., and Kellar, Kenneth J. [³H]Acetylcholine Binding Sites in Brain: Effect of Disulfide Bond Modification, 387

Seeman, Philip. See Lilly, Fraser, Jung, and Venter, 10

Selassie, Cynthia Dias. See Woodson, Ames, Hansch, and Weinshilboum, 471

Serabjit-Singh, Cosette. See Robertson, Croft, and Philpot, 156 Shannon, Michael. See Battaglia and Titeler, 409

Sharpless, Norman E. See Kador, 521

Silver, Paul J. See Miller and Stull, 235

Sladeczek, Fritz, Bockaert, Joël, and Mauger, Jean-Pierre. Differences between Agonist and Antagonist Binding to Alpha₁-Adrenergic Receptors of Intact and Broken-Cell Preparations, 392

Sokolovsky, Mordechai. See Henis, 357

Strosar, Mira. See Eyer and Lierheimer, 282

Stull, James T. See Miller and Silver, 235

Sturtevant, J. M. See Herbette and Katz, 259

Swanson, Phillip D. See Schellenberg and Anderson, 251

T

Taton, G.

See Robberecht, Delhaye, De Neef, Waelbroeck, De Smet, Leclerc, Chatelain, and Christophe, 169

See Waelbroeck, Delhaye, Chatelain, Camus, Pochet, Leclerc, De Smet, Robberecht, and Christophe, 174

Tephly, T. R. See Makar, 124

Tew, Kenneth D., Erickson, Leonard C., White, Geoffrey, Wang, Ann L., Schein, Philip S., and Hartley-Asp, Beryl. Cytotoxicity of Estramustine, a Steroid-Nitrogen Mustard Derivative, through Non-DNA Targets, 324

Thakker, Dhiren R. See Vyas, van Bladeren, Yagi, Sayer, Levin, and Jerina, 115

Thayer, Stanley A., and Fairhurst, Alan S. The Interaction of Dihydropyridine Calcium Channel Blockers with Calmodulin and Calmodulin Inhibitors, 6

Thompson, Claudia, and Lucier, George W. Hepatic Estrogen Responsiveness: Possible Mechanisms for Sexual Dimorphism, 69

Titeler, Milt. See Battaglia and Shannon, 409

Todaro, Louis J. See Blount, Fryer, and Gilman, 425

Tracy, James W., Catto, Brian A., and Webster, Leslie T., Jr. Reductive Metabolism of Niridazole by Adult Schistosoma mansoni: Correlation with Covalent Drug Binding to Parasite Macromolecules. 291

U

Undén, Anders. See Nordström, Alberts, Westlind, and Bartfai, 1

V

van Bladeren, Peter J. See Vyas, Thakker, Yagi, Sayer, Levin, and Jerina 115

Venter, J. Craig. See Lilly, Fraser, Jung, and Seeman, 10

Verlander, M. S. See Rosenkranz, Hoffman, Jacobson, Klevans, O'Donnell, Goodman, and Melmon, 429

Vyas, Kamlesh P., van Bladeren, Peter J., Thakker, Dhiren R., Yagi, Haruhiko, Sayer, Jane M., Levin, Wayne, and Jerina, Donald M. Regioselectivity and Stereoselectivity in the Metabolism of trans-1,2-Dihydroxy-1,2-dihydrobenz[a]anthracene by Rat Liver Microsomes. 115

w

Wachtel, Ruth E., and Wilson, Wilkie A., Jr. Barbiturate Effects on Acetylcholine-Activated Channels in Aplysia Neurons, 449 Waelbroeck, M.

Taton, G., Delhaye, M., Chatelain, P., Camus, J. C., Pochet, R., Leclerc, J. L., De Smet, J. M., Robberecht, P., and Christophe, J. The Human Heart Beta-Adrenergic Receptors. II. Coupling of Beta₂-Adrenergic Receptors with the Adenylate Cyclase System. 174

See Robberecht, Delhaye, Taton, De Neef, De Smet, Leclerc, Chatelain, and Christophe, 169

Wamsley, James K. See Zarbin, Palacios, and Kuhar, 341

Wang, Ann L. See Tew, Erickson, White, Schein, and Hartley-Asp, 324

Wang, De-Shin. See Evans, Patierno, Cantoni, and Costa, 77

Wanwimolruk, Sompon, Birkett, Donald J., and Brooks, Peter M. Structural Requirements for Drug Binding to Site II on Human Serum Albumin, 458

Webster, Leslie T., Jr. See Tracy and Catto, 291

Weinshilboum, Richard M. See Woodson, Ames, Selassie, and Hansch, 471

Westlind, Anita. See Nordström, Alberts, Undén, and Bartfai, 1
White, Geoffrey. See Tew, Erickson, Wang, Schein, and Hartley-Asp. 324

White, Steven J., and Jacobs, Robert S. Effect of Stypoldione on Cell Cycle Progression, DNA and Protein Synthesis, and Cell Division in Cultured Sea Urchin Embryos, 500

Widen, Steven G. See Denney, Fritz, Patel, and Abell, 60

Wiersma, David A., and Roth, Robert A. The Prediction of Benzo[a]pyrene Clearance by Rat Liver and Lung from Enzyme Kinetic Data. 300

Wilkinson, Christopher F. See Murray, Marcus, and Dubé, 129

Wilson, Leslie. See O'Brien and Jacobs, 493

Wilson, Wilkie A., Jr. See Wachtel, 449

Woodson, Lee C., Ames, Matthew M., Selassie, Cynthia Dias, Hansch, Corwin, and Weinshilboum, Richard M. Thiopurine Methyltransferase: Aromatic Thiol Substrates and Inhibition by Benzoic Acid Derivatives, 471

Wright, Gregory B., Alexander, R. Wayne, Eckstein, Laurie S., and Gimbrone, Michael A., Jr. Characterization of the Rabbit Ventricular Myocardial Receptor for Angiotensin II: Evidence for Two Sites of Different Affinities and Specificities, 213

Y

Yagi, Haruhiko. See Vyas, van Bladeren, Thakker, Sayer, Levin, and Jerina, 115

Yamazoe, Yasuchi. See Kamataki, Maeda, Matsuda, Ishii, and Kato, 146

Z

Zahler, Warren L. See Forte and Bylund, 42

Zarbin, Marco A., Palacios, Jose M., Wamsley, James K., and Kuhar, Michael J. Axonal Transport of Beta-Adrenergic Receptors: Antero- and Retrogradely Transported Receptors Differ in Agonist Affinity and Nucleotide Sensitivity, 341

Zeleznikar, Robert J., Jr., Quist, Eugene E., and Drewes, Lester R. An Alpha₁-Adrenergic Receptor-Mediated Phosphatidylinositol Effect in Canine Cerebral Microvessels, 163

Ziminski, T. See Cybulska, Borowski, and Gary-Bobo, 270

Zukin, Suzanne, See Chow, 203

Zunino, Franco. See Gambetta, Colombo, and Lanzi, 336

CUMULATIVE SUBJECT INDEX1 FOR VOLUMES 23 AND 24

A	in heart auricles (human), 24, 174
Acetylcholine	in pituitary GH ₃ cells, 24 , 189
-activated neuronal channels, barbiturate effects, 24, 449	inhibition, 24 , 195, 380
³ H-labeled, binding sites in brain (rat), 24, 387	noncoupled with angiotensin II (rabbit), 24, 213
modulation	somatostatin inhibition, 24, 183
adenylate cyclase in GH ₃ pituitary cells, 24, 189	spermatozoal, effect of forskolin, 24, 42
cyclic AMP content in pituitary GH ₃ cells, 24, 189	testicular, effect of forskolin, 24, 42
prolactin secretion in pituitary GH ₃ cells, 24, 189	Adipose tissue
muscarinic, 24, 380	content in nonresponsive mice, 24, 464
receptor	role in hexachlorobiphenyl metabolism (mouse), 24, 464
effect of cis-bis-Q (eel), 23, 344	Adrenal
nicotinic, antibiotic inhibition, 23, 8	cortex, activation by guanine nucleotides (rat), 23, 369
release, 24, 1	medulla, ascorbic acid secretion (bovine), 23, 437 medullary cells
storage (ray), 24, 48, 55	calcium uptake (bovine), 23, 547
transport	catecholamine secretion (bovine), 23, 547
effect of tetraphenylborate (ray), 24, 55	catecholamine secretion (bovine), 23, 671
in synaptic vesicles (ray), 24, 48	culture (bovine), 23, 547
Acetylcholinesterase	ion flux (bovine), 23, 681
brain (chicken), 23, 717	steroidogenesis, inhibition, 23, 743
red blood cell, monoclonal antibodies (human), 24, 513	Adrenergic receptor
ACTH, see Adrenocorticotropic hormone	alpha ₁
Activation	agonist and antagonist binding, 24, 392
adenylate cyclase, role of calcium and magnesium ions (rat), 23, 369	chlorpromazine antagonism, 23, 67
benzidine, by peroxidases, 23, 766	in cerebral microvessels (dog), 24, 163
oxidation, mechanisms (rat), 24, 137	in pituitary neurointermediate lobe (porcine), 24, 409
Activity	postsynaptic, in tracheal smooth muscle (dog), 23, 570
adenylate cyclase, synaptic membranes from striatum (rat), 23, 393	trifluoperazine antagonism, 23, 67
antiparasitic, niridazole (schistosome), 24, 291	turnover in submaxillary glands (rat), 23, 282
aromatic heptaene macrolide antibiotics, on biological and lipidic	vas deferens (rat), 23, 359
model membranes, 24, 270	alpha ₂ -
cytocidal, 9-deazaadenosine, in colon carcinoma (human), 24, 309	in intestinal epithelial cells (rat), 23, 228
ionophoretic, 24, 270	postsynaptic, in tracheal smooth muscle (dog), 23, 570
Acyclovir, herpes simplex virus sensitivity, 24, 316	beta
Adaptation, cellular, down-regulation and desensitization, 24, 413	agonist affinity (rat), 24, 341
Adenohypophysis	agonists, nonselective (human), 24, 169
dopamine receptor (rat), 23, 576 effect of muscarinic antagonists on receptor conformations (rat), 24,	axonal transport (rat), 24, 341
357	in erythrocytes (rat), 24, 174
	in heart (rat), 24, 174
Adenosine deaminase, lymphocytic (mouse), 23, 165	in heart auricles (human), 24, 169
interaction with stimulatory ligands, 24, 195	in reticulocytes (rat), 24, 174
S-Adenosylmethionine	interaction with full and partial agonists, 24, 398
elevation (rat), 24, 124	nucleotide sensitivity (rat), 24, 341
hepatic	on intact L6 muscle cells, 24, 398
effect of methionine (rat), 24, 124	tracheal smooth muscle, 24, 235
effect of nitrous oxide (rat), 24, 124	beta ₂ , in heart (human), 24 , 174
Adenylate cyclase	Adrenocorticotropic hormone, mechanism of action (rat), 23, 369
activity	Affinity
in cultured fibroblasts, 23, 648	oxotremorine analogues, for ileal muscarinic receptors (guinea pig)
in synaptic membranes from striatum (rat), 23, 393	23, 17 phenyl N-methyl carbamates, quantum mechanical study, 24, 436
adrenal cortex, activation by guanine nucleotides (rat), 23, 369	• • • • • • • • • • • • • • • • • • • •
anterior pituitary (rat), 23, 576	Aflatoxin B ₁ , metabolism to promutagen (rat), 24, 146 Aggregation, platelet, inhibition by S-nitrosothiols (human), 23, 653
catalytic component, 24, 195	Aging
coupling to striatal muscarinic receptors, 24, 380	
D ₂ dopamine receptor binding (rat), 23, 576	effect on cytochrome P-450 isoenzymes (rabbit), 23, 244 effect on drug-metabolizing enzymes (rabbit), 23, 244
dopamine inhibition (rat), 23, 576	Agonist
GTP-dependent activity, 23, 648	affinity for beta-adrenergic receptors (rat), 24, 341
heart, coupling with beta2-adrenergic receptors (human), 24, 174	beta-adrenergic receptors (rat), 24, 341
	full, in heart (human), 24, 174
¹ Boldface numbers indicate appropriate volume; lightface numbers	nonselective (human), 24, 169
indicate pagination.	partial, in heart (human), 24, 174
• •	• ·-, ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·-

0026-895X/83/060537-18\$02.00/0 Copyright © 1983 by The American Society for Pharmacology and Experimental Therapeutics. All rights of reproduction in any form reserved.

```
Agonist—Continued
                                                                           2-Aminofluorine
  beta<sub>2</sub>-selective, binding in heart (human), 24, 169
                                                                              cytochrome P-450 induction (rat), 24, 146
  binding
                                                                              mutagenic products (rabbit), 24, 156
    in caudate nucleus (porcine), 24, 366
                                                                            Aminoglycoside antibiotics, 3-dimensional structure-activity relation-
    to alpha<sub>1</sub>-adrenergic receptors, 24, 392
                                                                                  ship, 23, 127
    to anterior pituitary (rat), 23, 44
                                                                           2-Amino-6-methyl-dipyrido(1,2-a:3',2'-d)imidazole, polychlorinated bi-
    temperature dependence, 24, 392
                                                                                  phenyl hydroxylation (rat), 24, 146
  concentration jumps (eel), 23, 344
                                                                           3-Amino-1-methyl-5H-pyrido(4,3-b)indole, polychlorinated biphenyl
  differential effects, 24, 398
                                                                                  hydroxylation (rat), 24, 146
  full, interaction with beta-adrenergic receptors, 24, 398
                                                                           p-Aminophenol, oxidation, catalysis, 23, 461
  -induced changes in nucleotide synthesis and degradation, 23, 384
                                                                            Amphetamine, microsomal metabolism (rat), 23, 748
  kappa, in thalamus (rabbit), 24, 23
                                                                            Amphibian, myelinated axon, 23, 519
  mu, in cerebellum (rabbit), 24, 23
                                                                           Amylobarbitone, oxidation (human), 23, 474
  muscarinic
                                                                            Analogue
    ileal (guinea pig), 23, 17
                                                                             cystosine arabinoside, antileukemic activity, 23, 175
    partial (guinea pig), 23, 17
                                                                             dCMP (human), 23, 159
                                                                             2'-deoxycytidine, antileukemic activity, 23, 175
    in cerebellum (rabbit), 24, 23
                                                                             formation, NAD, 23, 534
    in thalamus (rabbit), 24, 23
                                                                              oxotremorine, 24, 1
  partial, interaction with beta-adrenergic receptors, 24, 398
                                                                                ileal muscarinic receptors (guinea pig), 23, 17
  postsynaptic
                                                                             substance P, dissociation constant (guinea pig), 23, 558
    at muscarinic cholinergic synapses, 24, 1
                                                                              uridine, transport in lymphoblastoid cells (human), 23, 153
    muscarinic, 24, 1
                                                                            Anemia, sickle cell, hemoglobin solubility, 23, 100
                                                                            Anesthetic, local, effect on binding and depolarization in cerebral cortex
  -receptor, high-affinity states (bovine), 23, 295
  semirigid, effect on nicotinic acetylcholine receptors (frog), 23, 337
                                                                                  (guinea pig), 23, 350
AH5183, see 2-(4-Phenylpiperidino)cyclohexanol
                                                                           Angiotensin II
Albumin
                                                                             noncoupled with adenylate cyclase (rabbit), 24, 213
 human serum
                                                                             receptor
    site II binding site, 24, 458
                                                                                regulation, cations and guanine nucleotides (rabbit), 24, 213
    structural requirements for binding, 24, 458
                                                                                ventricular myocardial (rabbit), 24, 213
  production, liver, effect of halothane (rat), 24, 277
                                                                           Aniline, microsomal p-hydroxylation, 23, 213
Alcohol, see also Ethanol
  microsomal p-hydroxylation of aniline, 23, 213
                                                                              effect on acetylcholine transport (ray), 24, 55
Aldose reductase
                                                                             transport, inhibitors, 23, 92
  inhibitor site, pharmacophor requirements, 24, 521
                                                                           Ansamycins, structure-activity relationship, 23, 133
  inhibitors, design, 24, 521
                                                                            Antagonism
Alkaloid
                                                                             dynorphin
  ergot, interaction with D-2 dopamine receptors (bovine), 23, 585
                                                                                \beta-chlornaltrexamine, 23, 36
 harmala, ionization, 23, 614
                                                                                naloxone, 23, 36
Alkoxymethylenedioxybenzene, derivatives, interactions with hepatic
                                                                              summation of inhibitory effects, 24, 30
      microsomal mixed-function oxidases (rat), 24, 129
                                                                           Antagonist
N-Alkyl-functionalized congeners and amides related to isoproterenol,
                                                                              γ-aminobutyric acid, binding in brain (rat), 23, 326
      24, 429
                                                                              beta-adrenergic
Allosteric interactions in brain (rat), 23, 326
                                                                                in heart (human), 24, 174
Amine
                                                                                nonselective (human), 24, 169
  aromatic
                                                                              beta<sub>1</sub>-selective, binding in heart (human), 24, 169
    metabolism in liver (rabbit), 24, 156
    mutagenesis (rabbit), 24, 156
                                                                                to alpha<sub>1</sub>-adrenergic receptors, 24, 392
  bound, chromaffin granules (bovine), 23, 431
                                                                                to anterior pituitary (rat), 23, 44
Amide, carboxylic acid, related to isoproterenol, 24, 429
                                                                              calmodulin
Amiloride, inhibition of Na<sup>+</sup>-Ca<sup>2+</sup> exchange in brain (rat), 24, 251
                                                                                effect on Ca2+ uptake in peritoneal macrophages (guinea pig), 23,
Amino acid
  adduct, thioacetamide S-oxide (rat), 23, 219
                                                                                effect on smooth muscle (bovine), 23, 665
 receptor, acidic, in hippocampus, 24, 222, 229
                                                                             folate, tetrahydrobiopterin, 24, 103
2-Aminoanthracene, mutagenic products (rabbit), 24, 156
                                                                             muscarinic
4-Aminobiphenyl, cytochrome P-450 induction (rat), 24, 146
                                                                                benzilates and tropates, 24, 357
γ-Aminobutyric acid
                                                                                effect on receptor conformations in adenohypophysis (rat), 24, 357
  antagonist, binding in brain (rat), 24, 326
                                                                                ileal (guinea pig), 23, 17
  binding, group-selective reagent modification, 23, 52
                                                                             presynaptic
                                                                                at muscarinic cholinergic synapses, 24, 1
  receptor
    brain-specific binding (rat), 23, 326
                                                                                muscarinic, 24, 1
                                                                             regulatory, iododeoxyuridine metabolism, 23, 709
    -chloride ion channel complex (rat), 23, 315
    interactions with benzodiazepine receptor (rat), 23, 315
                                                                             Ro 15-1788, effect on benzodiazepine receptors (rat), 23, 289
γ-Aminobutyric acid-A, brain-specific binding sites (rat), 23, 326
                                                                           Anthracycline antibiotics, binding in liver (rat), 24, 336
5'-Amino-5'-deoxythymidine
                                                                           Antibiotic(s)
  modulation of iododeoxyuridine cytotoxicity, 23, 709
                                                                             aminoglycoside, 3-dimensional structure relationship, 23, 127
  modulation of iododeoxyuridine metabolism, 23, 709
                                                                             anthracycline, binding in liver (rat), 24, 336
  preferential inhibition of phosphorylation, 24, 90
                                                                             antitumor protein, 23, 500
```

aromatic heptaene macrolide	Benz[a]anthracene, induction of cytochrome P-450 in fibroblast
activity on biological and lipidic model membranes, 24, 270	(mouse), 23, 198
electric charge, 24, 270	Benzidine, activation by peroxidases, 23, 766
effect on nicotinic acetylcholine receptor, 23, 8	20 α -Benzoate, binding in cerebral cortex (guinea pig), 23, 350
holo-, chromophore, 24 , 97	Benzodiazepine
Antibody, monoclonal	antagonist, Ro 15-1788 (rat), 23, 289
cholinesterases (human), 24, 513	binding
molecular activity (human), 24, 60	group-selective reagent modification, 23, 52
monoamine oxidase (human), 24, 60	sites, water solubility (rat), 23, 310
Antidepressant	endogenous inhibitor competition in vivo (rat), 23, 310
brain, receptors, 23, 594	receptor
effect on dextromethorphan binding, 23, 629	binding, extraction in distilled water (rat), 23, 310
Antidiarrheal agents, effect on intestinal epithelial cells (rat), 23, 228	binding kinetics (rat), 23, 289
Antimycin A, effects on parotid gland (rat), 23, 71	brain-specific (rat), 23, 326
Antipyrine, oxidation (human), 23, 474	conformational change (rat), 23, 289
Antitumor drug, α-1,3,5-triglycidyl-s-triazinetrione, 23, 182	endogenous inhibitor(s) (rat), 23, 310
Antitussive, effect on dextromethorphan binding, 23, 629	interactions with y-aminobutyric acid and barbiturate recepto
Antiviral agents, cytotoxicity, 24, 90	sites (rat), 23, 315
Antiviral mechanism	ligand interactions, 24, 425
acyclovir, 24, 316	subtypes (rat), 23 , 315
(E)-5-(2-bromovinyl)-2'-deoxyuridine, 24, 316	1,4-Benzodiazepines, conformational recognition of receptor, 24, 425
Anxiolytic, binding in brain (rat), 23, 326	Benzoic acid, derivatives, effect on thiopurine methyltransferase, 24
Apamin, effect in vas deferens (guinea pig), 23, 409	471
Apoprotein, neocarzinostatin binding, 23, 500	Benzo[a]pyrene
Aromatic sulfhydryl methyl acceptors, 24, 471	clearance, prediction (rat), 24, 300
Aryl hydrocarbon hydroxylase	cytochrome P-450 induction (rat), 24, 146
cytochrome P-450 (rat), 24, 129	liver metabolism (rat), 24, 300
induction in fibroblasts (mouse), 23, 198	lung metabolism (rat), 24, 300
reconstituted system (guinea pig), 23, 258	metabolism, product inhibition, 23, 735
Ascaris suum, glycogen metabolism, cyclic AMP-mediated regulation,	Benzphetamine
23, 378	metabolism, in hepatic microsomes (rat), 23, 748
Ascorbic acid	sequential oxidation (rat), 23, 748
compartmentalization (bovine), 23, 437	N-Benzylethyl- α -phenylnitrone, microsomal metabolism (rat), 23, 740
secretion (bovine), 23, 437	Betamethasone
by chromaffin cells (bovine), 23, 437	activation of monooxygenases (rat), 24, 137
Atenolol, binding in heart (human), 24, 169, 174	-mediated activation of biphenyl 2-hydroxylation (rat), 24, 137
ATP, ³ H-labeled	Binding
binding, 23 , 1	[3H]acetylcholine, in brain (rat), 24, 387
divalent ion-specific binding (rabbit), 23, 1	agonist
ATPase, divalent ion, 23, 1	temperature dependence, 24, 392
Atrium, phosphatidylinositol metabolism (mouse), 24, 351	to $alpha_1$ -adrenergic receptors, 24, 392
Auricle, heart, beta-adrenergic receptors (human), 24, 169, 174	γ -aminobutyric acid, group-selective reagent modification, 23, 52
Auromomycin	antagonist, to $alpha_1$ -adrenergic receptors, 24, 392
DNA damage, 24 , 97	anthracycline antibiotics, in liver (rat), 24, 336
effect on HeLa S ₃ nuclei, 24, 97	³ H-ATP, 23, 1
Axon, myelinated	benzodiazepine, group-selective reagent modification, 23, 52
amphibian, 23, 519	1,4-benzodiazepines, conformational recognition of receptor, 24, 425
effect of scorpion neurotoxins, 23, 519	[35S]t-butylbicyclophosphorothionate, to brain-specific sites (rat), 23
Axonal transport, beta-adrenergic receptors (rat), 24, 341	326
5-Azadeoxycytidine, inhibition of DNA methylation, 24, 109	cocaine
5-Azadeoxycytidine 5'-triphosphate	in brain (mouse, rat), 23, 600
DNA methylase, 24, 109	in platelets (human), 23, 600
DNA polymerase, 24, 109	covalent
6-Azauridine, transport, in lymphoblastoid cells (human), 23, 153	4-dimethylaminophenol, to hemoglobin (human), 24, 282
	mechanism, 24 , 182
В	site in hemoglobin (human), 24, 282
Barbiturate	cytochrome P-450, mechanism, 23, 213
binding	dextromethorphan
in brain, 23 , 52	effect of antidepressants, 23, 629
in brain (rat), 23 , 326	effect of antitussives, 23, 629
effects on acetylcholine-activated neuronal channels, 24, 449	effect of diphenylhydantoin, 23, 629
receptor, interactions with benzodiazepine receptor (rat), 23, 315	effect of noscapine, 23, 629
Batrachotoxin-induced depolarization in cerebral cortex (guinea pig),	effect of phenothiazines, 23, 629
23, 350	[³H]dextromethorphan
Batrachotoxinin-A, ³ H-labeled, binding in cerebral cortex (guinea pig),	in brain (guinea pig), 23, 619
23, 350	in brain and liver (guinea pig), 23, 629
BC ₃ H ₄ cell, agonist and antagonist binding to alpha ₁ -adrenergic recep-	dextrorphan, in brain (guinea pig, rat), 23, 619
tors, 24 , 392	diazepam, conformation for, 24, 425

Binding—Continued	Brain
divalent ion-specific, of ³ H-ATP (rabbit), 23, 1	[3H]acetylcholine binding sites (rat), 24, 387
dopamine receptor (bovine), 23, 295	alpha ₁ -adrenergic receptors (porcine), 24, 409
DNA, neocarzinostatin chromophore, 23, 500	antidepressants, receptors, 23, 594
drug	carboxylesterases, inhibition (chicken), 23, 717
covalent (schistosome), 24, 291	cocaine binding (mouse, rat), 23, 600
energy-dependent (human), 24, 485	cortex, muscarinic receptors (rat), 24, 357
fatty acid study, 24, 458	dextromethorphan binding (guinea pig), 23, 629
hydrophobic, 24, 324	dopamine receptors (dog, human), 24, 10
structural requirements, 24, 458	[3H]flunitrazepam binding sites, solubility (rat), 23, 310
estramustine, to nuclear matrix, 24, 324	high-affinity dextromethorphan binding sites
estrogen, hepatic (rat), 24, 69	regional distribution (guinea pig), 23, 619
ethylketocyclazocine, to neurotumor cells, 23, 486	subcellular distribution (guinea pig), 23, 619
guanine nucleotides	medulla-pons, muscarinic receptors (rat), 24, 357
in adrenal membranes (rat), 23, 369	microtubule assembly, inhibition by stypoldione (bovine), 24, 493
role of calcium ion (rat), 23, 369	Na ⁺ -Ca ²⁺ exchange (rat), 24 , 251
[³ H]imipramine, 23 , 607	nicotinic cholinergic receptor (rat), 24, 387
ion recognition sites, brain-specific (rat), 23, 326	opiate receptor, mu and kappa subtypes (rat), 24, 203
kinetics, benzodiazepine (rat), 23, 289	serotonergic neurons (mouse, rat), 23, 600
¹²⁵ I-labeled cobra α-toxin, 23 , 8	-specific [35S]t-butylbicyclophosphorothionate binding sites (rat), 23
ligand-receptor interactions (bovine), 23, 585	326
[⁸ H]mepyramine	Bromobenzene metabolism, glutathione (rat), 23, 235
temperature dependence, 23, 60	(E)-5-(2-Bromovinyl)-2'-deoxyuridine, herpes simplex virus sensitivity
to histamine H ₁ receptor, 23, 60	24, 316
[³ H] <i>cis</i> -methyldioxolane	Butaclamol, conformational properties, 24, 243
in caudate nucleus (porcine), 24, 374	Butylated hydroxyanisole, effect on benzidine oxidation, 23, 766
to guanyl nucleotide-sensitive sites (porcine), 24, 366	t-Butylbicyclophosphorothionate, 35S-labeled, binding to brain-specific
multiple states (bovine), 23, 585	sites (rat), 23 , 326
muscarinic receptors, modification by gallamine (rat), 23, 551	t-Butylphosphorothionate, affinity binding (rat), 23, 326
quinazolines, conformation for, 24, 425	γ-Butyrolactone, receptor, computer-assisted modeling, 23, 511
radioligand, tracheal (dog), 23, 570	Butyrylcholinesterase, plasma, monoclonal antibodies (human), 24, 51
Ro 11-2465, 23, 607	
site(s)	\mathbf{c}
[³ H]acetylcholine (rat), 24, 387	Ca ²⁺ , see also Calcium
beta-adrenergic receptors in heart (human), 24, 169, 174	-dependent cyclic AMP accumulation, regulation in pituitary tumo
benzodiazepine, water solubility (rat), 23, 310	cells (rat), 23, 399
cardiac muscarinic receptor (rat), 24, 15	intracellular, accumulating system in peritoneal macrophages (guine
kappa opiate, regional distribution (rabbit), 24, 23	pig), 23, 78
opiate, in central nervous system (rabbit), 24, 23	metabolism, in pituitary tumor cells (rat), 23, 399
serotonin ₁ , 23, 594	mobilization, in GH ₃ cells (rat), 23, 399
[³ H]spiroperidol	-Na ⁺ , exchange in brain (rat), 24, 251
in striatum (rat), 23, 303	transport in brain (rat), 24, 251
thermodynamics (rat), 23, 303	uptake in peritoneal macrophages (guinea pig), 23, 78
tetrabenazine, chromaffin granules (bovine), 23, 431	Cadmium
[3H]tetrahydrotrazodone, 23, 594	growth inhibition, 24, 77
[³ H]yohimbine (rat), 23 , 228	-resistant cells, 24, 77
Biochemical analysis	Calcium, see also Ca ²⁺
in study of effect of chlorpromazine (human), 23, 771	-activated potassium conductance (guinea pig), 23, 409
in study of erythrocyte membrane protein (human), 23, 771	channel blockers, 24, 6
Biosynthesis, tetrahydrobiopterin, 24, 103	effect on beating in heart cells in culture, 23, 417
Biotransformation, phenol, by liver microsomes (rat), 23, 453	exchange, in heart cells, 23, 417
Biphenyl	ion
hydroxylation	role in adenylate cyclase activation (rat), 23, 369
cumene hydroperoxide (rat), 24, 137	role in guanine nucleotide binding (rat), 23, 369
K_m and V_{max} (rat), 24, 137	mobilization in parotid gland (rat), 23, 71
2-hydroxylation	pump, inhibition by ouabain (bovine), 23, 681
betamethasone-mediated (rat), 24, 137	release, myocardial cell membrane, 23, 417
mechanisms (rat), 24, 137	uptake
polychlorinated, induction of high-spin form of cytochrome P-450	in adrenal medullary cells (bovine), 23, 547
(rat), 24, 146	myocardial cell membrane, 23, 417
· ····································	myocardiai cen memorane, 23, 417
cis-Bis-Q, See cis-3,3'-Bis-[α-(trimethylammonium)methyl]azobenzene cis-3,3'-Bis-[α-(trimethylammonium)methyl]azobenzene, purification	Calmodulin
Cio-olo -1915-1 a-la mileni yiaiminoimuni) memiyi izzobenzene.	Calmodulin
	antagonist
and properties, 23, 344	antagonist effect on Ca ²⁺ uptake in peritoneal macrophages (guinea pig), 23
and properties, 23, 344 Bladder, urinary	antagonist effect on Ca ²⁺ uptake in peritoneal macrophages (guinea pig), 23 78
and properties, 23, 344 Bladder, urinary divalent ion-specific binding of ³ H-ATP (rabbit), 23, 1	antagonist effect on Ca ²⁺ uptake in peritoneal macrophages (guinea pig), 23 78 effect on smooth muscle (bovine), 23, 665
and properties, 23, 344 Bladder, urinary divalent ion-specific binding of ³ H-ATP (rabbit), 23, 1 smooth muscle (rabbit), 23, 1	antagonist effect on Ca ²⁺ uptake in peritoneal macrophages (guinea pig), 23 78 effect on smooth muscle (bovine), 23, 665 effect
and properties, 23, 344 Bladder, urinary divalent ion-specific binding of ³ H-ATP (rabbit), 23, 1	antagonist effect on Ca ²⁺ uptake in peritoneal macrophages (guinea pig), 23 78 effect on smooth muscle (bovine), 23, 665

```
inhibitors, interaction with calcium channel blockers. 24, 6
                                                                               cytocidal activity of 9-deazaadenosine (human), 24, 309
  interaction with calcium channel blockers, 24, 6
                                                                               effect of sangivamycin (human), 24, 509
Calorimetry, model membranes, partitioning, 24, 259
                                                                               HT-29, in vitro translation of mRNA (human), 23, 540
Cannabinoids
                                                                             culture, 23, 486
  effects on prostaglandin synthesis (human), 23, 121
                                                                             division, inhibition (sea urchin), 24, 500
                                                                             epithelial, intestinal, alpha2-adrenergic receptor (rat), 23, 228
  stimulation of arachidonate release (human), 23, 121
                                                                             erythrocyte, monoclonal antibodies to acetylcholinesterase (human),
Cannabis, effect on prostaglandin synthesis (human), 23, 121
Carbamylcholine, effect on <sup>22</sup>Na<sup>+</sup> permeability, 23, 8
                                                                                  24, 513
Carbinolamine, intermediate, in N-demethylation reactions, 23, 758
                                                                             5-fluorouracil activity, 23, 190
Carbon tetrachloride
                                                                             folate cofactor pools, 23, 190
  effect of long-term administration on hepatic mtDNA polymerase
       (mouse), 24, 329
                                                                                in culture, effect of calcium on beating, 23, 417
                                                                                in culture, effect of halothane on beating, 23, 417
  liver regeneration after treatment (mouse), 24, 329
Carboxylesterase, brain (chicken), 23, 717
                                                                             HeLa, DNA metabolism, 23, 171
Carboxylic acid
                                                                             HeLa S
  amides, related to isoproterenol, 24, 429
                                                                                effects of auromomycin, 24, 97
  congeners, related to isoproterenol, 24, 429
                                                                                nuclear chromatin, 23, 493
Carboxymethylation, protein, nitrous oxide (rat), 24, 124
                                                                             hepatoma
Carcinogenesis, polycyclic aromatic hydrocarbons (rat), 24, 115
                                                                                variant, glucocorticoid-inducible gene (rat), 23, 779
Carcinogenicity
                                                                                wild-type, glucocorticoid-inducible gene (rat), 23, 779
   2,4-dideuterioestradiol (hamster), 23, 278
                                                                             herpes simplex virus-infected, 24, 90
  2-fluoroestradiol (hamster), 23, 278
                                                                             intact
                                                                                agonist and antagonist binding to alpha;-adrenergic receptors, 24,
  4-fluoroestradiol (hamster), 23, 278
Carcinoma, colon
  cell culture (human), 24, 309
                                                                                dopamine receptor binding on (bovine), 23, 295
   cytocidal activity of 9-deazaadenosine (human), 24, 309
                                                                              isolated
   effect of 5-fluorouracil and 5-fluorouridine (human), 23, 540
                                                                                adrenal medulla (bovine), 23, 671
   effect of sangivamycin on cells (human), 24, 509
                                                                                effect of ouabain (bovine), 23, 681
                                                                              lymphoblastoid, transport of uridine and 6-azauridine (human), 23,
Catalysis
   N-demethylation reactions, 23, 758
   4-hydroxylation of debrisoquine (human), 23, 474
                                                                              S49 lymphoma, cyc and H21a variants, 24, 183
Catalytic component, adenylate cyclase, 24, 195
                                                                              mammalian, cultured, nucleoside transport, 24, 479
Catechol formation in liver (rat), 23, 453
                                                                              muscle, L6
Catecholamine
                                                                                intact, 24, 398
   carrier, chromaffin granules (bovine), 23, 431
                                                                                interactions of full and partial agonists with beta-adrenergic recep-
   conjugates, 24, 429
                                                                                  tors, 24, 398
   ionization, chromaffin granules (bovine), 23, 431
                                                                              NCB-20 hybrid, ethylketocyclazocine binding, 23, 486
   secretion (bovine), 23, 437
                                                                              neoplastic, cultured, transport activity, 24, 479
     in adrenal medullary cells (bovine), 23, 547, 671, 681
                                                                              neuroblastoma \times glioma NG108-15 hybrid, opiate regulation of cyclic
     ouabain stimulation (bovine), 23, 671
                                                                                  AMP levels, 23, 26
   storage vesicle, chromaffin cell (bovine), 23, 437
                                                                              pituitary, GH<sub>3</sub>
Cation
                                                                                adenylate cyclase, 24, 189
   effect
                                                                                cyclic AMP content, 24, 189
     on angiotensin II receptor (rabbit), 24, 213
                                                                                prolactin secretion, 24, 189
     on dextromethorphan binding (guinea pig), 23, 619
                                                                                hemoglobin solubility, 23, 100
     on [3H]cis-methyldioxolane binding to guanyl nucleotide-sensitive
                                                                                2-imidazoline treatment (human), 23, 731
       sites (porcine), 24, 366
                                                                              survival, after exposure to mercury and X-rays, 24, 84
   divalent
                                                                            Central nervous system, multiple opiate binding sites (rabbit), 24, 23
     receptor in salivary gland membrane (rat), 23, 563
     regulation of substance P binding in salivary membranes (rat), 23,
                                                                            Centruroides sculpturatus, venom neurotoxins, 23, 519
                                                                            Cerebellum
Caudate nucleus, muscarinic receptor (porcine), 24, 366, 374
                                                                              membranes (rabbit), 24, 23
                                                                              mu opiate agonists (rabbit), 24, 23
   adrenal medullary
                                                                            Cerebral cortex
                                                                              [3H]batrachotoxinin-A binding (guinea pig), 23, 350
     calcium uptake (bovine), 23, 547
                                                                              20α-benzoate binding (guinea pig), 23, 350
     catecholamine secretion (bovine), 23, 547, 671
     culture (bovine), 23, 547
                                                                              microvessels
     effect of ouabain (bovine), 23, 671, 681
                                                                                 alpha<sub>1</sub>-adrenergic receptor (dog), 24, 163
                                                                                 phosphatidylinositol effect (dog), 24, 163
   BC<sub>3</sub>H<sub>4</sub>, agonist and antagonist binding to alpha<sub>1</sub>-adrenergic recep-
                                                                            Chemotherapy
       tors, 24, 392
                                                                              implications (human), 23, 159
   broken preparation, agonist and antagonist binding to alpha1-adre-
       nergic receptors, 24, 392
                                                                              malaria, 23, 92
   C3H/10T1/2, cytochrome P-450 induction (mouse), 23, 198
                                                                            Chinese hamster ovary cell, tiazofurin inhibition, 23, 534
                                                                            Chloramphenicol
   cadmium-resistant, 24, 77
   Chinese hamster ovary, tiazofurin inhibition, 23, 534
                                                                              cytochrome P-450 inhibition (rat), 23, 445
   chromaffin, ascorbic acid secretion (bovine), 23, 437
                                                                              effect on hepatic cytochrome P-450 (rat), 23, 445
                                                                            Chloride, ion channel-y-aminobutyric acid complex (rat), 23, 315
   colon carcinoma
                                                                            β-Chlornaltrexamine, dynorphin antagonism, 23, 36
     culture (human), 24, 309
```

Chlorpromazine	Convulsants, cage (rat), 23, 326
antagonism, $alpha_1$ -adrenergic effects, 23, 67	Copper, growth inhibition, 24, 77
effect on proteins in erythrocyte membranes (human), 23, 771	Coronary artery, phosphodiesterase inhibitors (bovine), 23, 424
Cholera toxin, effect on GTPase activity in striatal membranes (rat),	Covalent binding, protein (rat), 23, 219
24, 380	Cross-linking, intramolecular, 24, 282
Cholesterol	Crystal structure, diphenylhydantoin-9-ethyladenine complex, 23, 273
side-chain cleavage, 23, 743	Crystallography, X-ray, conformation of neuroleptics, 24, 243
synaptic membrane content (mouse), 23, 86	Culture
· ·	
Cholinergic receptor, nicotinic, in brain (rat), 24, 387	cell, 23, 486
Cholinergic synaptic vessels (ray), 24, 55	adrenal medullary (bovine), 23, 547
acetylcholine transport (ray), 24, 48	colon carcinoma (human), 24, 309
Cholinesterase	fibroblasts, adenylate cyclase activity, 23, 648
immunochemical comparisons (human), 24, 513	heart, beating, 23, 417
inhibitors, structure-activity relationships, 24, 436	neoplastic, transport activity, 24, 479
monoclonal antibodies (human), 24, 513	Plasmodium falciparum, growth suppression in vitro, 23, 92
Cholinolytic, presynaptic (ray), 24, 48	Cumene hydroperoxide, biphenyl hydroxylation (rat), 24, 137
Chromaffin cell	Cyclic AMP
adrenomedullary, ascorbic acid secretion (bovine), 23, 437	accumulation
· · · · · · · · · · · · · · · · · · ·	
primary culture (bovine), 23, 437	Ca ²⁺ regulation in GH ₃ cells (rat), 23, 399
Chromaffin granules, catecholamine carrier (bovine), 23, 431	in epithelial cells (rat), 23, 228
Chromatin	in GH_3 cells (rat), 23, 399
HeLa S ₃ nuclei, effects of neocarzinostatin, 23, 493	activity in cultured fibroblasts, 23, 648
single-strand breaks, linker, 23, 493	Ca ²⁺ -dependent accumulation, regulation in pituitary tumor cells
soluble, release, 24, 97	(rat), 23, 399
Chromatography, high-performance liquid, purification of cis-bis-Q	cellular, opiate regulation, 23, 26
(eel), 23, 344	content in pituitary GH ₃ cells, 24, 189
Chromophore	coronary artery cells (bovine), 23, 424
•	· · · · · · · · · · · · · · · · · · ·
degradation of chromatin, 23, 493	-dependent protein kinase, 24, 235
neocarzinostatin, binding to DNA, 23, 500	alteration (rat), 23, 641
nonprotein, 23, 500	Type I (rat), 23, 641
Circular dichroism, neocarzinostatin chromophore, 23, 500	Type II (rat), 23, 641
Clearance, benzo[a]pyrene, prediction (rat), 24, 300	-dependent polyamine enzymes, alteration (rat), 23, 641
Cleavage, side-chain, cholesterol, 23, 743	metabolism, muscarinic cholinergic receptor-mediated, 23, 384
Clone, BC3H-1 muscle cell line, 23, 8	regulation of glycogen metabolism (Ascaris), 23, 378
Clonidine, effect on cyclic AMP in intestinal epithelial cells (rat), 23,	tracheal smooth muscle, 24, 235
228	Cyclic GMP
Cocaine	accumulation (human), 23, 653
	coronary artery cells (bovine), 23, 424
binding	
in brain (mouse, rat), 23, 600	heme stimulation (human), 23, 653
in platelets (human), 23, 600	muscarinic stimulation, 24, 1
N-demethylation (mouse), 23, 482	Cyclosporin A, lymphocyte sensitivity, 23, 703
metabolism (mouse), 23, 482	Cysteine conjugate β -lyase (rat), 23, 761
toxicity (mouse), 23, 482	Cytochalasin B, effect on 3-O-methyl-D-glucose in isolated hepatocytes
Colon	(rat), 23 , 141
carcinoma, cytocidal activity of 9-deazaadenosine (human), 24, 309	Cytochrome
carcinoma cells	P-448, 3-methylcholanthrene-inducible (rat), 23, 252
culture (human), 24, 309	P-450
effect of 5-fluorouracil and 5-fluorouridine (human), 23, 540	activation (rat), 24, 137
effect of sangivamycin (human), 24, 509	arvl hydrocarbon hydroxylase (rat), 24, 129
Complex	-dependent monooxygenases, destruction (mouse, rat), 23, 206
diphenylhydantoin-9-ethyladenine, crystal structure, 23, 273	epoxidation of benzo-ring diol epoxides (rat), 24, 115
hydrogen-bonded, crystal structure, 23 , 273	forms 2, 4, and 5 (rabbit), 24, 156
Complexation, metal, with rifamycins, 23, 133	form 5, effect of β -naphthoflavone (rabbit), 24 , 156
Computer-assisted modeling	hepatic (rabbit), 24, 156
γ-butyrolactone receptor, 23 , 511	hepatic, catalytic characterization (rat), 24, 146
picrotoxinin receptor, 23, 511	hepatic, N-demethylation, 23, 758
Conformation	hepatic, N-demethylation of cocaine (mouse), 23, 482
butaclamol, 24 , 243	hepatic, 4-hydroxylation catalysis (human), 23, 474
fortimicins, 23 , 127	hepatic, immunochemical quantitation (rat), 24, 146
	• •
isobutaclamol, 24, 243	hepatic, in benzo[a]pyrene clearance (rat), 24, 300
receptor, adenohypophyseal, effect of muscarinic antagonists (rat),	hepatic, isozymes (rabbit), 24, 156
24, 357	hepatic, isozymes (rat), 23, 265, 748
sodium rifamycin SV, 23, 133	hepatic, 3-methylcholanthrene-induced (guinea pig), 23, 258
Conformational change, benzodiazepine receptors (rat), 23, 289	hepatic, phenol metabolism (rat), 23, 453
Conformer, biologically active, 24, 243	hepatic, role in N-demethylation, 23, 758
Congener, carboxylic acid, related to isoproterenol, 24, 429	hepatic, suicide inactivation (rat), 23, 445
Conjugate, catecholamine, 24, 429	
	hepatocytic (rat), 23, 235
Contraction, smooth muscle, alpha-adrenergic (dog), 23, 570	hepatocytic (rat), 23, 235 high-spin form (rat), 23, 146

induction in C3H/10T1/2 fibroblasts (mouse), 23, 198 isoenzymes, induction and aging (rabbit), 23, 244	Dexamethasone, effect on 3-O-methyl-D-glucose uptake in isolated hepatocytes (rat), 23, 141
isozymes (rabbit), 24 , 156	Dextromethorphan binding
isozymes (rat), 23, 748	effect of antidepressants, 23, 629
mechanism of binding to, 23, 213	effect of antitussives, 23, 629
<i>N</i> -oxidation (mouse), 23 , 482	effect of diphenylhydantoin, 23, 629
phenobarbital induction (rat), 23, 265	effect of noscapine, 23, 629
purification (guinea pig), 23, 258	effect of phenothiazines, 23, 629
pulmonary, in benzo[a]pyrene clearance (rat), 24, 300	Dextromethorphan binding
quantitation (rabbit), 23, 244	high-affinity
reduction complex (rat), 23, 467	in brain, 23, 629
renal, localization (mouse, rat), 23, 206	in brain (guinea pig), 23, 619
substrate specificity (human), 23, 474	Dextrorphan binding, in brain (guinea pig), 23, 619
xylene induction (rat), 23, 265	Diabetes, complications, control, 24, 521
P-450c, active site (rat), 24, 115 P-450 _{cc}	Dialysis, equilibrium, in study of drug binding, 24, 458 Diazepam
-dependent cholesterol cleavage, 23, 743	conformation for binding, 24, 425
inhibition, 23, 743	effect on [³ H]flunitrazepam binding sites (rat), 23, 310
Cytosine arabinoside, analogues, antileukemic activity, 23, 175	2,5'-Dideoxyadenosine, interaction with stimulatory ligands, 24, 195
Cytotoxicity, see also Toxicity	2,4-Dideuterioestradiol
antagonism, 24, 90	carcinogenicity (hamster), 23, 278
estramustine, 24, 324	estrogenicity (hamster), 23, 278
iododeoxyuridine, 23, 709	Diethylnitrosamine
mercury (II), 24, 84	effect of long-term administration on hepatic mtDNA polymerase
3-methylcholanthrene metabolites (mouse), 23, 198	(mouse), 24 , 329
X-rays, 24 , 84	oval cell proliferation after long-term treatment (mouse), 24, 329
D	Diffusion, accelerative exchange (human), 23, 146
_	Dihydrofolate reductase
Daunorubicin-binding protein from liver (rat), 24, 336	hepatic
dCMP analogues (human), 23, 159	effects of methotrexate (rat), 23, 724 effects of nitrous oxide (rat), 23, 724
deaminase (human), 23, 159	inhibitors, 24, 103
Deaminase (numan), 25, 155	Dihydropyridine, calcium channel blockade, 24, 6
adenosine, lymphocytic (mouse), 23, 165	trans-1,2-Dihydroxy-1,2-dihydrobenz[a]anthracene, metabolism (rat),
dCMP (human), 23, 159	24, 115
deoxycytidylate, substrate and regulator specificity (human), 23, 159	4-Dimethylaminophenol, covalent binding to hemoglobin (human), 24,
9-Deazaadenosine	282
cytocidal activity in colon carcinoma (human), 24, 309	Dimorphism, sexual, mechanisms (rat), 24, 69
effects on nucleic acids in colon carcinoma (human), 24, 309	Diphenylhydantoin
effects on protein synthesis in colon carcinoma (human), 24, 309	effect on dextromethorphan binding, 23, 629
7-Deaza-7-carboxamidoadenosine, see Sangivamycin	9-ethyladenine complex, crystal structure, 23, 273
Deazapterin, inhibition of tyrosine hydroxylase (bovine), 23, 104	Dissociation constant
Debrisoquine, 4-hydroxylation (human), 23, 474	determination by pharmacological procedures (guinea pig), 23, 558
Deethylation, ethoxycoumarin (rat), 23, 235	substance P (guinea pig), 23, 558 substance P analogues (guinea pig), 23, 558
Degradation, chromatin by chromophore, 23, 493	Distribution, electron, in tetramethylammonium ion, 24, 443
by neocarzinostatin, 23, 493	Disulfide bond, effect on [³ H]acetylcholine binding (rat), 24, 387
Demethylation, mechanism (mouse), 23, 482	DNA
N-Demethylation	binding, neocarzinostatin chromophore, 23, 500
carbinolamine intermediate, 23, 758	dihydriol oxide modifications, 23, 735
cocaine (mouse), 23, 482	effect on microsomal benzo[a]pyrene metabolism, 23, 735
cytochrome P-450-catalyzed, 23, 758	metabolism, in HeLa cells, 23, 171
Denervation, effect on hippocampal receptors, 24, 229	methylase, inhibition by 5-azadeoxycytidine, 24, 109
2'-Deoxycoformycin, toxicity in spleen lymphocytes (mouse), 23, 165	non-targets, cytotoxicity of estramustine, 24, 324
2'-Deoxycytidine, analogues, antileukemic activity, 23, 175	polymerase, 5-azadeoxycytidine 5'-triphosphate, 24, 109
Deoxycytidine kinase, role in antileukemic activity, 23, 175	quinone intercalation, 23, 735
Deoxycytidylate deaminase, substrate and regulator specificity (hu-	repair, 24, 84
man), 23, 159 Deoxyhemoglobin S, solubility, effect of phenylalanine derivatives, 23,	single-strand breaks, 24, 84 synthesis
100	inhibition, 23, 698
Depletion, nonprotein, thiol (schistosome), 24, 291	in lymphocytes (mouse), 23, 165
Depolarization, batrachotoxin-induced, in cerebral cortex (guinea pig),	Dopamine
23, 350	β-hydroxylase
Desensitation	chromaffin cell (bovine), 23, 437
cyclic AMP metabolism, 23, 384	metabolic clearance rate (rat), 23, 112
intrinsic activity-dependent, homologous, 24, 413	inhibition of adenylate cyclase (rat), 23, 576
Development, acidic amino acid receptors in hippocampus during, 24,	receptor
229	adenohypophyseal (rat), 23, 576

Dopamine—Continued	Epoxide hydrolase, hepatic (rat), 24, 115
receptor—Continued	Equilibrium dialysis, in study of drug binding, 24, 458
agonist/antagonist interactions (rat), 23, 303	Ergot, alkaloid, interaction with D-2 dopamine receptors (bovine), 23
binding on intact cells (bovine), 23, 295	585
D ₂ , anterior pituitary (bovine), 23, 585	Erythrocyte
D ₂ , characterization (rat), 23, 576	acetylcholinesterase, monoclonal antibodies (human), 24, 513
D ₂ , molecular size (dog, human), 24, 10	beta-adrenergic receptors (rat), 24, 174
D ₂ , relationship to other neurotransmitters (dog, human), 24, 10	lysis, induction by aromatic heptaene macrolide antibiotics, 24, 270
D ₂ , size (dog, human), 24, 10	membrane
D ₂ , structure (dog, human), 24, 10	anion transport inhibitors, 23, 92
in brain (dog, human), 24, 10	protein, effect of chlorpromazine (human), 23, 771
molecular weight (dog, human), 24, 10	nucleoside transport mechanism, interaction with 2'-halogeno-2'-de
thermodynamics (rat), 23, 303	oxyuridines (human), 23, 146
Down-regulation, agonist-specific, homologous, temperature-depend-	Ester, phorbol, tumor-promoting, 23, 703
ent, 24 , 413	Esterase, neurotoxic (chicken), 23, 717
Drug antimitotic, 24, 324	Estramustine, cytotoxicity, through non-DNA targets, 24, 324
antischistosomal, 24, 291	Estrogen
	binding, hepatic (rat), 24, 69 hepatic responsiveness (rat), 24, 69
binding	
covalent (schistosome), 24, 291	receptor, hepatic (rat), 24, 69
energy-dependent (human), 24, 485	Estrogenicity
fatty acid study, 24, 4 58 hydrophobic, 24, 324	2,4-dideuterioestradiol (hamster), 23, 278 2-fluoroestradiol (hamster), 23, 278
structural requirements, 24, 458	4-fluoroestradiol (hamster), 23, 278 Ethanol, see also Alcohol
-membrane interactions, 24, 259	·
-metabolizing enzymes, hepatic microsomal (rabbit), 23, 244 modified sensitivities, herpes simplex virus, 24, 316	chronic treatment, effect on synaptic membrane order (mouse), 23
	86
oxidation, polymorphism (human), 23, 474	in vitro effects on synaptosomal membrane order (mouse), 23, 86
resistance, mechanism (human), 24, 485	Ethoxycoumarin, deethylation (rat), 23, 235
Dynorphin A shlamaltenamina antaganism 92 26	9-Ethyladenine-diphenylhydantoin complex, crystal structure, 23, 273
β-chlornaltrexamine antagonism, 23, 36	Ethylketocyclazocine, ³ H-labeled, binding to neurotumor cells, 23, 480
receptor	N-Ethylmaleimide, effects on [3H]cis-methyldioxolane binding to guanyl nucleotide-sensitive and insensitive sites (porcine), 24
ileum (guinea pig), 23, 36	
vas deferens (mouse), 23, 36	374 Franking Stillshold spices inhibition of himding (solbis) 94 99
spare receptor fraction, potency, 23, 36	Etorphine, ³ H-labeled, opiate inhibition of binding (rabbit), 24 , 23
E	Excitation-secretion coupling, chromaffin cell (bovine), 23, 437
Electric charge, aromatic heptaene macrolide antibiotics, 24, 270	Exocytosis
Electric organ	catecholamine, adrenal medullary cells (bovine), 23, 547
acetylcholine transport (ray), 24, 48	chromaffin cell (bovine), 23, 437
acetylcholine transport (ray), 24, 55	F
Electron distribution, in tetramethylammonium ion, 24, 443	•
Electron paramagnetic resonance, in study of ethanol tolerance	FAD-containing monooxygenase
(mouse), 23, 86	N-demethylation of cocaine (mouse), 23, 482
Electron spin resonance	N-oxidation (mouse), 23, 482
in study of benzidine activation, 23, 766	Fatty acid, in study of drug binding, 24, 458
in study of effect of chlorpromazine (human), 23, 771	Fenmetozole, anti-sickling property (human), 23, 731
in study of erythrocyte membrane protein (human), 23, 771	Fenoterol
in study of oxidation of p-aminophenol, 23, 461	binding in heart (human), 24, 174
Electron transport, enhanced (rat), 24, 137	nonselective beta-adrenergic agonist, binding in heart (human), 24
Electroplaque, Electrophorus, acetylcholine receptors, 23, 344	169
Elution, alkaline, 24, 84	Fibroblast
Embryo, development, effect of stypoldione (sea urchin), 24, 500	aryl hydrocarbon hydroxylase induction (mouse), 23, 198
Empirical force field, fortimicin, 23, 127	C3H/10T1/2, cytochrome P-450 induction (mouse), 23, 198
Endoplasmic reticulum, Ca ²⁺ transport (guinea pig), 23, 78	cultured, adenylate cyclase activity, 23, 648
Energy	pulmonary, prostaglandin synthesis (human), 23, 121
-dependent drug binding (human), 24, 485	Flavonoids, effects on splenocyte cell cultures, 23, 698
-dependent Vinca alkaloid retention (human), 24, 485	Fluorescence, neocarzinostatin chromophore, 23, 500
Enzyme	Fluorescent probe, in study of drug binding, 24, 458
drug-metabolizing	5-Fluoro-2'-deoxycytidine, effect on DNA metabolism in HeLa cells
effect of aging (rabbit), 23, 244	23, 171
hepatic microsomal (rabbit), 23, 244	
inactivation, cytochrome P-450 (rat), 23, 445	2-Fluoroestradiol
interaction of full and partial inhibitors, 24, 30	carcinogenicity (hamster), 23, 278
kinetics, liver and lung (rat), 24, 300	estrogenicity (hamster), 23, 278
• • • • • • • • • • • • • • • • • • • •	4-Fluoroestradiol
polyamine, alteration (rat), 23, 641 Epinephrine	carcinogenicity (hamster), 23, 278
effect on epithelial cyclic AMP levels (rat), 23, 228	estrogenicity (hamster), 23, 278
nonselective beta-adrenergic agonist, binding in heart (human), 24,	5-Fluorouracil
169	cellular activity, relationship to folate cofactor pools, 23, 190

5-Fluorouridine, effect on colon carcinoma cells (human), 23, 540 Fluphenazine, effect on smooth muscle (bovine), 23, 665	-sensitive sites binding of [³ H]cis-methyldioxolane in caudate nucleus (porcine)
Flunitrazepam, ³ H-labeled, binding sites, solubility (rat), 23, 310 Folate	24, 374 [3H]cis-methyldioxolane binding to (porcine), 24, 366
antagonists, of tetrahydrobiopterin, 24, 103 cellular cofactor pools, 23, 190	н
nitrous oxide (rat), 24, 124 Formate, oxidation (rat), 23, 724	
Forskolin, effect on sperm adenylate cyclase, 24, 42	2'-Halogeno-2'-deoxyuridines, interaction with erythrocyte nucleoside transport mechanism (human), 23, 146
Fortimicin, conformation, 23, 127	Halogenonucleosides, interaction with deoxyuridines (human), 23, 140
Free radical, p-aminophenol oxidation, 23, 461	Halothane chronotropic response, 23, 417
G	effect on beating in heart cells in culture, 23, 417
Gallamine	on secretion of liver proteins (rat), 24, 277
effect on muscarinic receptors (rat), 23, 551	on synthesis of liver proteins (rat), 24, 277
interaction with muscarinic receptors (rat), 23, 551	inotropic response, 23, 417
muscarinic receptor induction (rat), 24, 15	Harmala alkaloid, ionization, 23, 614
neuromuscular blocking (rat), 24, 15 Gastric inhibitory polypeptide, effect on 3-O-methyl-p-glucose in iso-	Heart atrium, phosphatidylinositol metabolism (mouse), 24, 351
lated hepatocytes (rat), 23, 141	auricles, beta-adrenergic receptors (human), 24, 169, 174
Gelation	beta-adrenergic receptors (rat), 24, 174
hemoglobin S, 23, 100	cells
inhibitors, model class, 23, 100	in culture, effect of calcium on beating, 23, 417
Gene coordinated regulation (rat), 23, 779	in culture, effect of halothane on beating, 23, 417
glucocorticoid-inducible, in hepatoma cells (rat), 23, 779	muscarinic receptors (rat), 24 , 15 HeLa cell
GH ₃ cell	DNA metabolism, 23, 171
Ca ²⁺ -dependent cyclic AMP accumulation (rat), 23, 399	S_3
Ca ²⁺ mobilization (rat), 23, 399	nucleus, chromatin, 23, 493
Gland, submaxillary, alpha ₁ -adrenergic receptor turnover (rat), 23, 282	nucleus, effects of auromomycin, 24, 97
Glucagon, effect on 3-O-methyl-D-glucose in isolated hepatocytes (rat), 23, 141	Heme activation of guanylate cyclase (human), 23, 653
Glucocorticoid	dependency, guanylate cyclase activation (human), 23, 653
effect on GTP-dependent adenylate cyclase activity, 23, 648	stimulation of cyclic GMP (human), 23, 653
-inducible genes in hepatoma cells (rat), 23, 779	Hemoglobin
response variants (rat), 23, 779	covalent binding of 4-dimethylaminophenol (human), 24, 282
Glucose metabolism, sorbital pathway, 24, 521	sickle, solubility, 23, 100
Glutamate receptor, in hippocampus, 24, 222, 229 Glutathione, bromobenzene metabolism (rat), 23, 235	Hemoproteins, effect on platelet aggregation (human), 23, 653 Hepatocyte, isolated
Glycogen	3-O-methyl-D-glucose uptake (rat), 23, 141
hepatocytic (rat), 23, 235	monooxygenase activity (rat), 23, 235
metabolism, cyclic AMP-mediated regulation (Ascaris), 23, 378	Hepatoma cell
synthase, muscle, effect of levamisole (Ascaris), 23, 378	variant, glucocorticoid-inducible gene (rat), 23, 779
Gonadotropin-releasing hormone, binding to anterior pituitary (rat), 23, 44	wild-type, glucocorticoid-inducible gene (rat), 23, 779 Hepatotoxicity, see also Toxicity
Growth inhibition, by metals, 24, 77	cocaine (mouse), 23, 482
GTP	Herpes simplex virus
binding protein, caudate nucleus (porcine), 24, 366, 374	-infected cells, 24, 90
-dependent adenylate cyclase activity, 23, 648	mutants, 24, 316
GTPase high-affinity	thymidine kinase, 24, 316
effect on adenylate cyclase activity, 24, 380	thymidylate kinase, 24, 316 Heterogeneity
in S49 lymphoma cyc ⁻ and H21a variants, 24, 183	benzodiazepine receptor interactions with γ-aminobutyric acid and
somatostatin stimulation, 24, 183	barbiturate receptor sites (rat), 23, 315
stimulation, 24, 380	beta-adrenergic receptor binding sites in heart (human), 24, 169, 174
Guanethidine, effects on vas deferens (guinea pig), 23, 409	cardiac muscarinic receptors (rat), 24, 15
Guanine nucleotide(s) binding, in adrenal membranes (rat), 23, 369	nucleoside transport, in mammalian cells, 24, 479 site-site interactions (rat), 24, 357
effect on angiotensin II receptor (rabbit), 24, 213	Hexachlorobiphenyl, metabolism, role of adipose tissue (mouse), 24
regulatory sites, 24, 183	464
synthesis, tiazofurin inhibition, 23, 534	3,4,5,3',4',5'-Hexachlorobiphenyl, induction of cytochrome P-448 (rat)
Guanoxan, oxidation (human), 23, 474	23, 252
Guanylate cyclase, heme activation (human), 23, 653	Hexachloro-1:3-butadiene
Guanyl nucleotide(s) -insensitive sites, binding of [³ H]cis-methyldioxolane in caudate nu-	destruction of cytochrome P-450-dependent monooxygenases (mouse, rat), 23, 206
cleus (porcine), 24, 374	renal necrosis (mouse, rat), 23, 206
regulation of substance P binding in salivary membranes (rat), 23,	n-Hexane, metabolism, 2,5-hexanedione, 23, 265
563	Hippocampus
salivary gland membrane (rat), 23, 563	acidic amino acid receptors, 24, 222, 229

Hippocampus—Continued	metabolism, pituitary GH ₃ cells, 24, 189
neurotransmitters, 24, 222	3-O-methyl-D-glucose uptake in isolated hepatocytes (rat), 23, 141
presynaptic receptors, 24, 229	multiple, kinetics, 24, 30
Holoantibiotic, chromophore, 24, 97	Na ⁺ -Ca ²⁺ exchange in brain (rat), 24 , 251
Homogenate, urinary bladder, divalent ion-specific binding of ³ H-ATP (rabbit), 23 , 1	noncompetitive, drug oxidation (human), 23, 474 nucleoside transport, mecuribenzenesulfonate, 24, 479
Hormone	platelet aggregation, by S-nitrosothiols (human), 23, 653
effect on 3-O-methyl-D-glucose uptake in isolated hepatocytes (rat),	pregnenolone synthesis, 23, 743
23, 141	product, tyrosine hydroxylase (bovine), 23, 104
gonadotropin-releasing, binding to anterior pituitary (rat), 23, 44	sodium pump, ouabain (bovine), 23, 681
responsiveness, role of cyclic AMP, 23, 384	specific, phosphorylation, 24, 90
steroid, action (rat), 23, 779	summation of effects, 24, 30
Horseradish peroxidase	zinc, in hepatic microsomes (rat), 23, 467
benzidine activation, 23, 766	Inhibitor
catalysis of p-aminophenol oxidation, 23, 461	aldose reductase, design, 24, 521
Hydrocarbon, polycyclic aromatic, hepatic metabolism (rat), 24, 115	calmodulin, interaction with calcium channel blockers, 24, 6
Hydrogen, bonding interaction, diphenylhydantoin-9-ethyladenine	cholinesterase, structure-activity relationships, 24, 436
complex, 23, 273	dihydrofolate reductase, 24, 103
Hydrogen peroxide	endogenous, competition with benzodiazepines in vivo (rat), 23, 310
benzphetamine-induced (rat), 23, 748	full and partial, interaction on single enzyme, 24, 30
formation by hepatic microsomes (rat), 23, 748	methylation, 24, 471
Hydroquinone, formation, in liver (rat), 23, 453	phosphodiesterase, effects on sodium nitroprusside and isoprotereno
N-Hydroxyamphetamine, microsomal metabolism (rat), 23, 748 Hydroxybenzylpindolol, ¹²⁵ I-labeled, binding in heart (human), 24, 169	(bovine), 23, 424
Hydroxylation	phospholipase A ₂ , effect on adrenal medullary cells (bovine), 23, 54' site, aldose reductase, pharmacophor requirements, 24, 521
biphenyl, K_m and V_{max} (rat), 24, 137	Insulin, effect on 3-O-methyl-D-glucose in isolated hepatocytes (rat)
tyrosine, tetrahydrobiopterin as cofactor (bovine), 23, 104	23, 141
4-Hydroxylation, debrisoquine (human), 23, 474	Interaction
p-Hydroxylation	drug-membrane, 24, 259
aniline, inhibitory activity of alcohols, 23, 213	nonspecific, structural site, 24, 259
microsomal, 23, 213	site-site (rat), 24, 357
Hyperplasia	Intestine
effect on cyclic AMP-dependent protein kinases (rat), 23, 641	epithelial cells, alpha ₂ -adrenergic receptor (rat), 23, 228
effect on polyamine enzymes (rat), 23, 641	secretion (rat), 23, 228
thyroid, effect on enzymes (rat), 23, 641	Iododeoxyuridine
Hypertrophy	cytotoxicity, 23, 709
effect on cyclic AMP-dependent protein kinases (rat), 23, 641	metabolism, 23, 709
effect on polyamine enzymes (rat), 23, 641	Ion
thyroid, effect on enzymes (rat), 23, 641	divalent
Hypophysectomy, effect on thyroid metabolism (rat), 23, 641	³ H-ATP binding (rabbit), 23, 1
•	ATPase activity (rabbit), 23, 1
I	flux
Neum	adrenal medullary cells (bovine), 23, 671
isolated, muscarinic receptors (guinea pig), 23, 17	in adrenal medullary cells (bovine), 23, 681
substance P, dissociation constant (guinea pig), 23, 558	nickel, effect on [3H]cis-methyldioxolane binding to guanyl nucleo
2-Imidazolines, identification as anti-sickling agents (human), 23, 731	tide-sensitive sites (porcine), 24, 366
Imipramine, ³ H-labeled, binding sites, 23 , 607	recognition sites, brain-specific (rat), 23, 326
IMP dehydrogenase, tiazofurin inhibition, 23, 534	requirements for cellular stimulation (bovine), 23, 671
Inactivation, enzyme, cytochrome P-450 (rat), 23, 445	tetramethylammonium, electron distribution, 24, 443
Induction, drug-metabolizing enzymes (rabbit), 23, 244	Ionization, harmala alkaloids, 23, 614 Ionophore-receptor complex, group-selective reagent modification, 23
Inhibition	,
acetylcholine transport (ray), 24, 55 adenylate cyclase activity, 24, 380	52 Iron-complexing agents, 23, 698
adrenal steroidogenesis, 23, 743	Isobutaclamol, conformational properties, 24, 243
brain microtubule assembly, by stypoldione (bovine), 24, 493	Isoenzyme, cytochrome P-450
calcium pump, ouabain (bovine), 23, 681	induction and aging (rabbit), 23, 244
cell division (sea urchin), 24, 500	phenobarbital induction (rat), 23, 265
competitive	xylene induction (rat), 23, 265
cholesterol cleavage, 23, 743	Isoproterenol
drug oxidation (human), 23, 474	N-alkyl-functionalized carboxylic acid congeners and amides, 24, 42
cytochrome P-450, by chloramphenicol (rat), 23, 445	effects on coronary artery cells (bovine), 23, 424
cytochrome P-450 _{acc} , 23, 743	nonselective beta-adrenergic agonist binding in heart (human), 24
gelation, model class, 23, 100	169
growth, by metals, 24, 77	potentiation (bovine), 23, 424
guanine nucleotide, by tiazofurin, 23, 534	Isozyme
IMP dehydrogenase, by tiazofurin, 23, 534	cytochrome P-450, 23, 748
kinetics, 23, 717	cytochrome P-450 (rabbit), 24, 156
lymphocyte mitagens by cyclosporin A 23 703	henetic cytochrome P-450 (ret) 23 748

K	metabolism of trans-1,2-dihydroxy-1,2-dihydrobenz[a]anthracene
Kassinin, dissociation constants in ileum (guinea pig), 23, 558	(rat), 24, 115
22-Ketocholesterol	mixed-function oxidases (rat), 24, 129
inhibition of cholesterol cleavage, 23, 743	NADPH oxidation (rat), 23, 467 phenol metabolism (rat), 23, 453
kinetics of inhibition, 23, 743	monoamine oxidase (human), 24, 60
Kidney	proteins
cytochrome P-450 (mouse, rat), 23, 206 hexachloro-1:3-butadiene, cytochrome P-450 destruction (mouse,	effect of halothane (rat), 24, 277
rat), 23, 206	secretion (rat), 24 , 277
monoamine oxidase (human), 24, 60	Location, neutron diffraction, direct determination model, 24, 259
Kinase	Loxapine, conformational properties, 24, 243
myosin chain, in smooth muscle (bovine), 23, 665	Lung benzo[a]pyrene clearance (rat), 24, 300
myosin light chain, in tracheal smooth muscle, 24, 235	fibroblasts, prostaglandin synthesis (human), 23, 121
protein	monoamine oxidase (human), 24, 60
alteration (rat), 23, 641 cyclic-AMP-dependent, 24, 235	β-Lyase, cysteine conjugate (rat), 23, 761
thymidine	Lymphoblast
herpes simplex virus, 24, 316	nucleoside kinase-deficient (human), 23, 153
substrate specificity, 24, 316	transport, uridine analogues (human), 23, 153
thymidylate, herpes simplex virus, 24, 316	Lymphoblastoid cell, transport of uridine and 6-azauridine (human) 23, 153
Kinetics	Lymphocyte
multiple inhibition, 24, 30	cyclosporin A sensitivity, 23, 703
steady-state, tyrosine hydroxylase (bovine), 23, 104	interaction with metal-complexing compounds, 23, 698
_	mitogenic stimulation, 23, 698
L	mitogens, 23 , 703
Lactoperoxidase, benzidine activation, 23, 766	mitogen-stimulated (mouse), 23, 165
Leiurus quinquestriatus, venom neurotoxins, 23, 519	splenic, 2'-deoxycoformycin toxicity (mouse), 23, 165
Leukemia	Lymphoid cell line inhibition of proliferation, 23, 698
CCRF-CFM cells, drug binding (human), 24, 485 inhibition by 2'-deoxycytidine analogues, 23, 175	interaction with metal-complexing compounds, 23, 698
L1210 cells, inhibition by nucleoside analogues, 23, 175	Lymphoma cell, cyc and H21a variants, 24, 183
Levamisole, effect on muscle contraction and glycogen metabolism	
(Ascaris), 23, 378	M
Ligand	Macromolecule, Schistosoma mansoni, drug binding, 24, 291
-receptor binding interactions (bovine), 23, 585	Macrophage, peritoneal, effect of calmodulin on Ca ²⁺ uptake (guines
stimulatory, interaction with 2',5'-dideoxyadenosine, 24, 195	pig), 23, 78
Lipid bilayer, solvation, 24, 259	Magnesium ion, role in adenylate cyclase activation (rat), 23, 369 Malaria, intraerythrocytic, anion transport blockers, 23, 92
vesicles, ionic permeability, 24, 270	Mammary tumor, virus induction (mouse), 23, 779
Lipoprotein, low-density, estrogen action (rat), 24, 69	Marine products, natural (sea urchin), 24, 500
Liver	Membrane
benzo[a]pyrene clearance (rat), 24, 300	adrenal, guanine nucleotide binding (rat), 23, 369
biphenyl hydroxylation (rat), 24, 137	anterior pituitary, gonadotropin-releasing hormone binding (rat), 23
cysteine conjugate β-lyase (rat), 23, 761	44
cytochrome P-450	biological effect of electric charge, 24, 270
forms 2, 4, and 5 (rabbit), 24, 156 form 5 (rabbit), 24, 156	interaction with propranolol and timolol, 24, 259
form 5, effect of β -naphthoflavone (rabbit), 24, 163	cerebellar (rabbit), 24, 23
induction by phenobarbital (rat), 23, 265	-drug interactions, 24, 259
isoenzyme, induction by xylene (rat), 23, 265	erythrocyte, protein, effect of chlorpromazine (human), 23, 771
suicide inactivation (rat), 23, 445	lipidic model, effect of electric charge, 24, 270
daunorubicin-binding protein (rat), 24, 336	model, interaction with propranolol and timolol, 24, 259
dextromethorphan binding (guinea pig), 23, 629	potential, cerebral cortex (guinea pig), 23, 350
mtDNA polymerase (mouse), 24, 329 effect of halothane (rat), 24, 277	S49 lymphoma cyc ⁻ and H21a variants, high-affinity GTPase, 24, 185 salivary gland, substance P binding (rat), 23, 563
estrogen responsiveness (rat), 24, 69	sarcoplasmic reticulum, 24, 259
3-methylcholanthrene treatment (guinea pig), 23, 258	synaptic
microsome	cholesterol content (mouse), 23, 86
activation of oxidation (rat), 24, 137	striatal, adenylate cyclase activity (rat), 23, 393
benzphetamine oxidation (rat), 23, 748	striatal, muscarinic receptors (rat), 24, 380
biphenyl 2-hydroxylation (rat), 24, 137	synaptosomal, effect of chronic ethanol treatment (mouse), 23, 86
cytochrome P-448 (rat), 23, 252 cytochrome P-450 (guinea pig), 23, 258	thalamic (rabbit), 24, 23 transport (human), 23, 146
cytochrome P-450 (guinea pig), 23, 258 cytochrome P-450, high-spin form (rat), 24, 146	Mepyramine, ³ H-labeled
drug-metabolizing enzymes (rabbit), 23, 244	binding to histamine H ₁ receptor, 23, 60
hydrogen peroxide formation (rat), 23, 748	temperature dependence of binding, 23, 60
metabolism of thioacetamide S-oxide (rat), 23, 219	Mercaptan-stimulated DNA scission activity, 23, 500

binding in caudate nucleus (porcine), 24, 374

Mercuribenzenesulfonate, inhibition of nucleoside transport, 24, 479	binding to guanyl nucleotide-sensitive sites (porcine), 24, 366
Mercury, growth inhibition, 24, 77	Methylene blue, effect in vas deferens (guinea pig), 23, 409
Mercury (II), cell survival after exposure, 24, 84	Methylenedioxybenzene, derivatives, hepatic microsomal (rat), 24, 129
Metabolic clearance rate, methodology, for circulating proteins (rat),	3-O-Methyl-D-glucose, uptake in isolated hepatocytes (rat), 23, 141
23, 112	N-Methyl-N-(1-methyl-4-pyrrolidino-2-butynyl)acetamide, action at
Metabolism	muscarinic cholinergic synapses, 24, 1
adrenal medullary cells (bovine), 23, 671 aromatic amines, in liver (rabbit), 24, 156	N-Methyl-4-piperidyl benzilate, binding in adenohypophysis (rat), 24, 357
benzo[a]pyrene, 23, 735	Methyltransferase, thiopurine
benzo[a]pyrene (rat), 24, 300	action, 24, 471
product inhibition, 23, 735	effect of benzoic acid derivatives, 24, 471
bromobenzene, glutathione (rat), 23, 235	Metoprolol, binding in heart (human), 24, 169, 174
Ca ²⁺ , in pituitary tumor cells (rat), 23, 399	Microsome
cyclic AMP, muscarinic cholinergic receptor-mediated, 23, 384	benzo[a]pyrene metabolism, 23, 735
drug	brain, high-affinity dextromethorphan binding sites (guinea pig), 23,
hepatic microsomal enzymes (rabbit), 23, 244	619
reductive (schistosome), 24, 291	hepatic
DNA, in HeLa cells, 23, 171	activation of oxidation (rat), 24, 137
glucose, sorbitol pathway, 24, 521	benzphetamine oxidation (rat), 23, 748
glycogen, cyclic AMP-mediated regulation (Ascaris), 23, 378 hexachlorobiphenyl, role of adipose tissue (mouse), 24, 464	biphenyl 2-hydroxylation (rat), 24, 137 cytochrome P-448 (rat), 23, 252
iododeoxyuridine, 23, 709	cytochrome P-450 (guinea pig), 23, 258
microsomal (rat), 24, 300	drug-metabolizing enzymes (rabbit), 23, 244
phenol, hepatic microsome (rat), 23, 453	high-spin form of cytochrome P-450 (rat), 24, 146
phosphatidylinositol, in heart (mouse), 24, 351	hydrogen peroxide formation (rat), 23, 748
phosphoinositide, in parotid gland (rat), 23, 71	metabolism of thioacetamide S-oxide (rat), 23, 219
pituitary GH ₃ cells, 24, 189	metabolism of trans-1,2-dihydroxy-1,2-dihydrobenz[a]anthracene
reductive, niridazole (schistosome), 24, 291	(rat), 24 , 115
requirements for cellular stimulation (bovine), 23, 671	mixed-function oxidases (rat), 24, 129
stereoselective, polycyclic aromatic hydrocarbons (rat), 24, 115	monooxygenase activity (rat), 23, 467
thioacetamide S-oxide (rat), 23, 219	NADPH oxidation (rat), 23, 467
thyroid, effect of hypophysectomy (rat), 23, 641	phenol metabolism (rat), 23, 453
tiazofurin, 23, 534	p-hydroxylation, 23, 213
trans-1,2-dihydroxy-1,2-dihydrobenz[a]anthracene (rat), 24, 115 Metabolite, 3-methylcholanthrene (mouse), 23, 198	metabolism (rat), 24, 300 Microtubule, brain, assembly, inhibition by stypoldione (bovine), 24,
Metal	493
complexation, with rifamycins, 23, 133	Microvessel, cerebral
-complexing agents, 23, 698	alpha ₁ -adrenergic receptor (dog), 24, 163
-complexing compounds, cellular interaction, 23, 698	phosphatidylinositol effect (dog), 24, 163
essential	Mitochondria, hepatic, DNA polymerase (mouse), 24, 329
cadmium induction, 24, 77	Mitogen, lymphocyte, 23 , 703
growth inhibition, 24, 77	stimulation, 23, 698
non-essential	stimulation (mouse), 23, 165
cadmium induction, 24, 77	Mitogenesis, sensitivity to cyclosporin A, 23, 703 Mitosis, anti-, drugs, 24, 324
growth inhibition, 24, 77 Metallithionen, induction by metals, 24, 77	Molecular mass, relative, characteristics, 23, 258
Metamphetamine, microsomal metabolism (rat), 23, 748	Molecular mechanics, calculations, 24, 243
Methanol poisoning (rat), 23, 724	Molecular orbital calculation, electron distribution in tetramethylam-
Methionine	monium ion, 24, 443
effect on hepatic S-adenosylmethionine (rat), 24, 124	Molecular size, D ₂ -dopamine receptor (dog, human), 24, 10
effect on hepatic methylation reactions (rat), 24, 124	Molecular structure, sodium rifamycin SV, 23, 133
nitrous oxide (rat), 24, 124	Molecular topology, steric parameters, 23, 213
synthetase	Monoacetylbenzidine, activation by peroxidases, 23, 766
hepatic, effects of methotrexate (rat), 23, 724	Monoamine oxidase
hepatic, effects of nitrous oxide (rat), 23, 724	brain (human), 24 , 60
Methotrexate, effects on liver (rat), 23, 724 3-Methoxy-4-aminoazobenzene, cytochrome P-450 induction (rat), 24,	kidney (human), 24, 60 liver (human), 24, 60
3-Methory-1-annihoazobenzene, cytochrome F-450 induction (rat), 24,	lung (human), 24, 60
Methylation	radioimmunoassay (human), 24, 60
nitrous oxide (rat), 24, 124	Monoclonal antibodies, cholinesterases (human), 24, 513
phospholipid, nitrous oxide (rat), 24, 124	Monooxygenase
thiol, 24, 471	activity
N-Methylcarbazole, N-demethylation, 23, 758	in hepatic microsomes (rat), 23, 467
3-Methylcholanthrene	in isolated hepatocytes (rat), 23, 235
effect on hepatocytic monooxygenase activity (rat), 23, 235	betamethasone activation (rat), 24, 137
induction of cytochrome P-448 (rat), 23, 252	cytochrome P-450-dependent, destruction (mouse, rat), 23, 206
induction of cytochrome P-450 in fibroblasts (mouse), 23, 198	FAD-containing, N-demethylation of cocaine (mouse), 23, 482
cis-Methyldioxolane, ³ H-labeled	steroid activation (rat), 24, 137

Muscarinic receptor

acetylcholine, binding in caudate nucleus (porcine), 24, 366	receptor (dog, human), 24, 10
action, 24, 1	semirigid, 24 , 243
agonist, inhibition of adenylate cyclase activity (rat), 23, 996	Neuromuscular blocking
binding properties (rat), 23, 551	gallamine (rat), 24, 15
cardiac, heterogeneity (rat), 24, 15 effect on phosphatidylinositol metabolism in heart (mouse), 24, 351	pancuronium (rat), 24, 15 Neuron
gallamine inhibition (rat), 23, 551	acetylcholine-activated channels, barbiturate effects, 24, 449
heart selectivity (rat), 23, 551	adrenergic, effects of guanethidine (guinea pig), 23, 409
ileal, oxotremorine analogues (guinea pig), 23, 17	serotonergic, association with cocaine binding (mouse, rat), 23, 600
in caudate nucleus (porcine), 24, 366, 374	serotonin uptake, 23, 607
modification of binding by gallamine (rat), 23, 551	Neurotoxicity
second binding site (rat), 23, 551	esterase (chicken), 23, 717
striatal, coupling to adenylate cyclase, 24, 380	organophosphorus compounds (chicken), 23, 717
Muscle	Neurotoxin
BC3H-1 clonal cell, 23, 8	polypeptide, 23, 519
contraction, effect of levamisole (Ascaris), 23, 378	scorpion, purification and physiology, 23, 519
L6 cells	Neurotransmitter in hippocampus, 24, 222
intact, 24, 398 interactions of full and partial agonists with beta-adrenergic recep-	receptor
tors. 24. 398	structure (dog, human), 24, 10
levamisole-perfused, cyclic AMP-mediated regulation of glycogen	target size (dog, human), 24, 10
metabolism (Ascaris), 23, 378	Neurotumor cell, NCB-20 hybrid, ethylketocyclazocine binding, 23, 486
smooth	Neutron diffraction, location, direct determination method, 24, 259
alpha-adrenergic contraction (dog), 23, 570	Nickel
contraction (bovine), 23, 665	growth inhibition, 24, 77
contraction (rat), 23, 359	ion, effect on [3H]cis-methyldioxolane binding to guanyl nucleotide
effects of fluphenazine (bovine), 23, 665	sensitive sites (porcine), 24, 366
tracheal, alpha-adrenergic receptors (dog), 23, 570	Nicotinic acetylcholine receptor, effect of semirigid agonists (frog), 23,
urinary bladder (rabbit), 23, 1	337
Mutagenesis	Niridazole antiparasitic activity (schistosome), 24, 291
2-aminoanthracine (rabbit), 24, 156 2-aminofluorine (rabbit), 24, 156	reductive metabolism (schistosome), 24, 291
aromatic amine-induced (rabbit), 24, 156	Nitrobenzylthioinosine, effect on nucleoside transport in cultured mam-
phenobarbital induction (rabbit), 24, 156	malian cells, 24, 479
Mutant, herpes simplex virus, 24, 316	Nitrogen
Myocardium, cell membrane, calcium uptake and release, 23, 417	oxide, effect on platelet aggregation (human), 23, 653
Myosin	-steroid mustard, cytotoxicity, 24, 324
light chain kinase	Nitroreductase, schistosome, 24, 291
in smooth muscle (bovine), 23, 665	Nitroreduction (schistosome), 24, 291
in tracheal smooth muscle, 24, 235	Nitrothiazole derivative, 24, 291
phosphorylation	2-Nitroso-1-phenylpropane, microsomal metabolism (rat), 23, 748
in smooth muscle (bovine), 23, 665	S-Nitrosothiols, inhibition of platelet aggregation (human), 23, 653 Nitrous oxide
in tracheal smooth muscle, 24, 235 Myocardium, ventricular receptor for angiotensin II (rabbit), 24, 213	effect on hepatic S-adenosylmethionine (rat), 24, 124
Myocardium, ventricular receptor for anglocensin in (rabbit), 24, 215	effect on hepatic methylation reactions (rat), 24, 124
	effects on liver (rat), 23, 724
N	folates (rat), 24, 124
	toxicity (rat), 24, 124
²² Na ⁺ , permeability, carbamylcholine-stimulated, 23, 8	Norbenzphetamine, microsomal metabolism (rat), 23, 748
Na ⁺	Norcocaine, cocaine N-demethylation (mouse), 23, 482
-Ca ²⁺ , exchange in brain (rat), 24, 251	Norepinephrine, effect on vas deferens (rat), 23, 359
transport in brain (rat), 24, 251	Noscapine, effect on dextromethorphan binding, 23, 629
NAD, analogue formation, 23, 534	Nuclear matrix, estramustine binding, 24, 324
NADPH oxidation, effect of zinc (rat), 23, 467	Nuclear Overhauser enhancement, conformation of fortimicins, 23, 127
Nalozone, dynorphin antagonism, 23, 36	Nucleic acid, in colon carcinoma cells in culture (human), 24, 309
β-Naphthoflavone, effect on hepatic cytochrome P-450, form 5 (rabbit),	Nucleoside erythrocyte transport mechanism, interaction with 2'-halogeno-2'-
24, 156 Naphthoic acid, moiety, 23, 500	deoxyuridines (human), 23, 146
Neocarzinostatin	kinase-deficient lymphoblasts (human), 23, 153
circular dichroism, 23, 500	transport (human), 23, 146
chromophore, binding to DNA, 23, 500	heterogeneity in mammalian cells, 24, 479
degradation of chromatin, 23, 493	in cultured mammalian cells, 24, 479
effects on chromatin in HeLa S ₃ nuclei, 23, 493	Nucleosome, degradation, 24, 97
fluorescence, 23, 500	Nucleotide
Neuroblastoma, delta-subtype opiate receptors, 24, 413	degradation, agonist-induced changes, 23, 384
Neuroblastoma cell, × glioma NG108-15 hybrid, opiate regulation of	guanine
cyclic AMP levels, 23, 26	effect on angiotensin II receptor (rabbit), 24, 213
Neuroleptic conformational properties. 24, 243	regulatory sites, 24, 183 tiazofurin inhibition. 23. 534
	TOWARD MINISTER MAY NOT

Nucleotide—Continued	Percoll density gradient, separation of parenchymal cells (rat), 23, 235
guanyl	Permeability, ²² Na ⁺ , carbamylcholine-stimulated, 23 , 8
regulation of substance P binding in salivary membranes (rat), 23,	Peroxidase
563	benzidine activation, 23, 766
salivary gland membrane (rat), 23, 563	horseradish, benzidine activation, 23, 766
regulatory protein (rat), 24, 341 sensitivity for beta-adrenergic receptors (rat), 24, 341	lactoperoxidase, benzidine activation, 23, 766 pH-dependent transport, in lymphoblastoid cells (human), 23, 153
synthesis, agonist-induced changes, 23, 384	Pharmacokinetics, liver and lung (rat), 24, 300
Nucleus	Pharmacology, light-flash (eel), 23, 344
HeLa S ₃ cell	Pharmacophor requirements of aldose reductase inhibitor site, 24, 521
chromatin, 23 , 49 3	Phencyclidine, inhibition of ethylketocyclazocine binding, 23, 486
effects of auromomycin, 24, 97	Phenformin, oxidation (human), 23, 474
soluble chromatin, 24, 97	Phenobarbital
o	effect of long-term administration on hepatic mtDNA polymerase (mouse), 24, 329
Octoclothepin, conformational properties, 24, 243	effect on benzphetamine oxidation (rat), 23, 748
Opiate	effect on hepatic aromatic amines (rabbit), 24, 156
multiple binding sites in central nervous system (rabbit), 24, 23 receptor	effect on hepatic cytochrome P-450 forms (rabbit), 24, 156 effect on hepatic microsomes (rat), 23, 748
delta-subtype, in neuroblastomas, 24, 413	effect on hepatocytic monooxygenase activity (rat), 23, 235
desensitization in neuroblastoma \times glioma NG108-15 hybrid cells, 24 , 413	hepatic centrilobular hypertrophy after long-term treatment (mouse), 24 , 329
down-regulation in neuroblastoma × glioma NG108-15 hybrid cells,	induction of cytochrome P-450 isozyme (rat), 23, 265
24, 413	mutagenesis induction (rabbit), 24, 156
in neuroblastoma × glioma NG108-15 hybrid cells, 23, 26	Phenol, biotransformation, by liver microsomes (rat), 23, 453
mu and kappa subtypes from brain (rat), 24, 203 regulation, cellular cyclic AMP, 23, 26	Phenothiazine, effect on dextromethorphan binding, 23, 629 Phenylalanine derivatives, effect on deoxyhemoglobin S, 23, 100
Opioid receptor, kappa, 23, 36	Phenyl N-methyl carbamates, affinities, quantum mechanical study,
Organophosphorus compounds, neurotoxicity (chicken), 23, 717	24, 436
Ornithine decarboxylase, thyroid (rat), 23, 641	2-(4-Phenylpiperidino)cyclohexanol, effect on acetylcholine transport
Ouabain	(ray), 24 , 48
calcium pump inhibition (bovine), 23, 681	Phorbol esters, tumor-promoting, 23, 703
effect on adrenal medullary cells (bovine), 23, 681	Phosphatidic acid, synthesis in parotid gland (rat), 23, 71
sodium pump inhibition (bovine), 23, 681	Phosphatidylinositol
-stimulated secretion in adrenal medullary cells (bovine), 23, 671	effect in cerebral microvessels (dog), 24, 163
Oxidase, mixed-function, microsomal (rat), 24, 129 Oxidation	metabolism in heart (mouse), 24, 351 Phosphodiesterase inhibitors
p-aminophenol, catalysis, 23, 461	effects on coronary artery cells (bovine), 23, 424
formate (rat), 23, 724	effects on sodium nitroprusside and isoproterenol (bovine), 23, 424
NADPH	Phosphoinositide
effect of zinc (rat), 23 , 467	metabolism in heart (mouse), 24, 351
in hepatic microsomes (rat), 23, 467	metabolism in parotid gland (rat), 23, 71
sequential, benzphetamine (rat), 23, 748	Phospholipase A ₂ inhibitors, effect on adrenal medullary cells (bovine),
N-Oxidation	23, 547
cytochrome P-450 (mouse), 23, 482	Phospholipid, methylation, nitrous oxide (rat), 24, 124
FAD-containing monooxygenase (mouse), 23, 482 Oxotremorine analogue(s), 24, 1	Phosphorylase muscle, effect of levamisole (Ascaris), 23, 378
ileal muscarinic receptors (guinea pig), 23, 17	smooth muscle (bovine), 23, 665
Oxygen atom, source in N-demethylation reactions, 23, 758	Phosphorylation
Oxygen 18 incorporation (rat), 23, 219	myosin
n	in smooth muscle (bovine), 23, 665
P	in tracheal smooth muscle, 24, 235
Pancreozymin, effect on 3-O-methyl-D-glucose in isolated hepatocytes	5-trifluoromethyl-2'-deoxyuridine, 24, 90
(rat), 23, 141	Physalaemin, dissociation constants in ileum (guinea pig), 23, 558
Pancuronium muscarinic receptor induction (rat), 24, 15	Physical dependence, ethanol (mouse), 23, 86 Physical state, lipid bilayer properties, drug solvation, 24, 259
neuromuscular blocking (rat), 24, 15	Physiology, scorpion neurotoxins, 23, 519
Paralysis, role of cyclic AMP-mediated glycogen metabolism (Ascaris),	Picrotoxin receptor, brain-specific binding (rat), 23, 326
23, 378	Picrotoxinin receptor, computer-assisted modeling, 23, 511
Parasite, Schistosoma mansoni, macromolecular drug binding, 24, 291	Pindolol, binding in heart (human), 24, 169
Parotid gland	Pituitary
calcium mobilization (rat), 23, 71	anterior
phosphatidic acid synthesis (rat), 23, 71	adenylate cyclase (rat), 23, 576
phosphoinositide metabolism (rat), 23, 71	D-2 dopamine receptor (bovine), 23, 585
Peptide, vasoactive intestinal	D ₂ dopamine receptor (rat), 23, 576
epithelial (rat), 23, 228	gonadotropin-releasing hormone binding (rat), 23, 44
modulation of adenylate cyclase in pituitary GH ₃ cells, 24, 189 modulation of cyclic AMP content in pituitary GH ₃ cells, 24, 189	intact cells (bovine), 23, 295 GH_3 cells
modulation of cyclic AMP content in pituitary GH ₃ cells, 24, 189	adenvlate cyclase. 24. 189

```
cyclic AMP content, 24, 189
                                                                               liver, effect of halothane (rat), 24, 277
     prolactin secretion, 24, 189
                                                                               nucleotide regulatory (rat), 24, 341
  neurointermediate lobe, [3H]prazosin-labeled alpha1-receptors (por-
                                                                               secretion, effect of halothane (rat), 24, 277
       cine), 24, 409
                                                                               synthesis, in colon carcinoma cells in culture (human), 24, 309
  tumor cells
     Ca<sup>2+</sup>-dependent cyclic AMP accumulation (rat), 23, 399
     Ca<sup>2+</sup> metabolism (rat), 23, 399
pKa, low, anomalous, 24, 243
                                                                             Quantum mechanics, in study of phenyl N-methyl carbamates, 24, 436
Plasma, butyrylcholinesterase, monoclonal antibodies (human), 24, 513
                                                                             Quinazolines, conformation for binding, 24, 425
Plasmodium falciparum, growth suppression in vitro, 23, 92
                                                                             Quinine, effect in vas deferens (guinea pig), 23, 409
Platelet
                                                                             Quinone, intercalation, DNA, 23, 735
  aggregation, inhibition by S-nitrosothiols (human), 23, 653
                                                                             Quinuclidinyl benzilate, binding in adenohypophysis (rat), 24, 357
  cocaine binding (human), 23, 600
  serotonin uptake, 23, 607
Poisoning, methanol (rat), 23, 724
                                                                                                                R
Polyamine, enzyme alteration (rat), 23, 641
Polychlorinated biphenyl
                                                                             Radiation inactivation, in study of dopamine D<sub>2</sub> receptor (dog, human),
  induction of high-spin form of cytochrome P-450 (rat), 24, 146
                                                                                    24, 10
  pharmacokinetics, induction of drug-metabolizing enzymes (mouse),
                                                                             Radical, free, in benzidine oxidation, 23, 766
                                                                            Radioligand, binding in trachea (dog), 23, 570
Polycyclic aromatic hydrocarbon, hepatic metabolism (rat), 24, 115
                                                                            Radioimmunoassay
Polymerase, mtDNA, characterization (mouse), 24, 329
                                                                               double-antibody, identification of hepatic cytochrome P-448, 23, 252
Polymorphism, drug oxidation (human), 23, 474
                                                                               monoamine oxidase (human), 24, 60
Polyol, pathway, 24, 521
                                                                            Receptor
Polypeptide, neurotoxins, 23, 519
                                                                               acetylcholine
Potassium, calcium-activated conductance (guinea pig), 23, 409
                                                                                 effect of cis-bis-Q (eel), 23, 344
Potentiation
                                                                                 nicotinic, agonist occupation and functional response, 23, 8
  isoproterenol effects (bovine), 23, 424
                                                                               adenohypophyseal, effect of muscarinic antagonists on conformation
  sodium nitroprusside effects (bovine), 23, 424
                                                                                    (rat), 24, 357
P Site, stimulatory ligands, 24, 195
                                                                               adrenergic, see Adrenergic receptor
Purification
                                                                               -agonist, high-affinity states (bovine), 23, 295
  duanorubicin-binding protein from liver (rat), 24, 336
                                                                               amino acid, acidic, in hippocampus, 24, 222, 229
  scorpion neurotoxins, 23, 519
                                                                               γ-aminobutyric acid
Pyrazolopyridines, brain-specific binding (rat), 23, 326
                                                                                 -chloride ion channel complex (rat), 23, 315
Practolol binding in heart (human), 24, 169, 174
                                                                                 interactions with benzodiazepine receptor (rat), 23, 315
Prazosin, <sup>3</sup>H-labeled, alpha<sub>1</sub>-receptors in pituitary (porcine), 24, 409
                                                                               barbiturate, interactions wiht benzodiazepine receptor (rat), 23, 315
Pregnenolone synthesis, inhibition, 23, 743
                                                                               benzodiazepine
Procaterol, binding in heart (human), 24, 169, 174
                                                                                 binding, extraction in distilled water (rat), 23, 310
Products, natural, marine (sea urchin), 24, 500
                                                                                 binding kinetics (rat), 23, 289
                                                                                 brain-specific (rat), 23, 326
Prolactin
  effect on Ca2+ metabolism in pituitary tumor cells (rat), 23, 399
                                                                                 conformational change (rat), 23, 289
  effect on cyclic AMP accumulation in pituitary tumor cells (rat), 23,
                                                                                 endogenous inhibitor(s), (rat), 23, 310
                                                                                 interactions with y-aminobutyric acid and barbiturate receptor
  -modulating hormones, effect on Ca<sup>2+</sup> and cyclic AMP (rat), 23, 399
                                                                                    sites (rat), 23, 315
  regulation (rat), 23, 576
                                                                                 ligand interactions, 24, 425
  secretion in pituitary GH<sub>3</sub> cells, 24, 189
                                                                                 subtypes (rat), 23, 315
                                                                               brain antidepressants, 23, 594
Propranolol
  binding in heart (human), 24, 169, 174
                                                                               y-butyrolactone, computer-assisted modeling, 23, 511
                                                                               complexes in brain (rat), 23, 326
  interaction with membranes, 24, 259
Propylthiouracil
                                                                               divalent cation, salivary gland membrane (rat), 23, 563
  -stimulated thyroid hyperplasia (rat), 23, 641
                                                                               dopamine
  -stimulated thyroid hypertrophy (rat), 23, 641
                                                                                 adenohypophyseal (rat), 23, 576
Prostaglandin
                                                                                 agonist/antagonist interactions (rat), 23, 303
  E<sub>1</sub>, intestinal epithelial (rat), 23, 228
                                                                                 binding on intact cells (bovine), 23, 295
  synthase, catalysis of p-aminophenol oxidation, 23, 461
                                                                                 D<sub>2</sub> (bovine), 23, 585
  synthesis, effect of cannabinoids (human), 23, 121
                                                                                 D<sub>2</sub>, characterization (rat), 23, 576
Protein
                                                                                 D<sub>2</sub>, molecular size (dog, human), 24, 10
  antitumor
                                                                                 in brain (dog, human), 24, 10
    antibiotic, 23, 500
                                                                                 molecular weight (dog, human), 24, 10
    effect on HeLa S<sub>3</sub> nuclei, 24, 97
                                                                                 thermodynamics (rat), 23, 303
  carboxymethylation, nitrous oxide (rat), 24, 124
                                                                               dynorphin
  circulating, metabolic clearance rate (rat), 23, 112
                                                                                 ileum (guinea pig), 23, 36
  covalent binding (rat), 23, 219
                                                                                 vas deferens (mouse), 23, 36
  daunorubicin-binding, from liver (rat), 24, 336
                                                                               estrogen, hepatic (rat), 24, 69
  erythrocyte membrane, effect of chlorpromazine (human), 23, 771
                                                                               glutamate, in hippocampus, 24, 222, 229
  estrogen-binding (rat), 24, 69
                                                                               histamine H<sub>1</sub>, [3H]mepyramine binding, 23, 60
                                                                               -ionophore complex, group-selective reagent modification, 23, 52
    alteration (rat), 23, 641
                                                                               -ligand binding interactions (bovine), 23, 585
    cyclic AMP-dependent, 24, 235
                                                                               low-affinity states, 24, 398
```

Receptor—Continued	Resistance		
multiple binding states (bovine), 23, 585	drug, mechanism (human), 24, 485		
multiple opiate, 23, 486	vinblastine (human), 24, 485		
multiplicity, binding in brain (rat), 23, 326	Vinca alkaloid (human), 24, 485		
muscarinic	Reticulocyte, beta-adrenergic receptors (rat), 24, 174		
acetylcholine, binding in caudate nucleus (porcine), 24, 366	Reticulum, sarcoplasmic, membrane, 24, 259		
action, 24, 1	2-β-D-Ribofuranosylthiazole-4-carboxamide, metabolism, 23, 534		
adenohypophyseal (rat), 24 , 357 agonist, inhibition of adenylate cyclase activity (rat), 23 , 393	Ribonucleoside, triphosphates, lymphocytic (mouse), 23, 165 Rifamycin SV, sodium salt, molecular structure, 23, 133		
binding properties (rat), 23, 551	RNA		
cardiac, heterogeneity (rat), 24, 15	messenger		
cholinergic, effect on cyclic AMP metabolism, 23, 384	in vitro translation (human), 23, 540		
coupling to adenylate cyclase, 24, 380	in vitro translational activity, 24, 509		
effect on phosphatidylinositol metabolism in heart (mouse), 24,	polyadenylated, sangivamycin incorporation (human), 24, 509		
351	synthesis, in lymphocytes (mouse), 23, 165		
gallamine inhibition (rat), 23, 551	Ro 11-2465 binding, 23, 607		
heart selectivity (rat), 23, 551			
ileal, oxotremorine analogues (guinea pig), 23, 17	${f s}$		
in caudate nucleus (porcine), 24, 366, 374			
modification of binding by gallamine (rat), 23, 551	Salbutamol, binding in heart (human), 24, 169, 174		
second binding site (rat), 23, 551	Salivary gland, membranes, substance P binding (rat), 23, 563 Sangivamycin		
neuroleptic (dog, human), 24, 10 neurotransmitter	effect on messenger RNA (human), 24, 509		
structure (dog, human), 24, 10	treatment of colon carcinoma cells (human), 24, 509		
target size (dog, human), 24, 10	Saponin, macrophage treatment (guinea pig), 23, 78		
nicotinic	Sarcoplasmic reticulum, membrane, 24, 259		
acetylcholine, effect of semirigid agonists (frog), 23, 337	Schistosoma mansoni, reductive metabolism of niridazole, 24, 291		
cholinergic, in brain (rat), 24, 387	Schistosome, nitroreductase, 24, 291		
chromaffin cell (bovine), 23, 437	Scorpion venom		
occupancy in vas deferens (rat), 23, 359	binding in cerebral cortex (guinea pig), 23, 350		
opiate	neurotoxins, 23, 519		
delta-subtype, in neuroblastomas, 24, 413	Secretion		
desensitization in neuroblastoma × glioma NG108-15 hybrid cells,	ascorbic acid, chromaffin cells (bovine), 23, 437		
24, 413	calcium uptake (bovine), 23, 547		
down-regulation in neuroblastoma × glioma NG108-15 hybrid cells,	catecholamine, adrenal medullary cells (bovine), 23, 547, 671, 681 liver proteins, effect of halothane (rat), 24, 277		
24, 413 in neuroblastoma \times glioma NG108-15 hybrid cells, 23, 26	Seminal vesicle, microsomes, p-aminophenol oxidation, 23, 461		
mu and kappa subtypes from brain (rat), 24, 203	Sensitivity		
opioid, kappa, 23, 36	drug, modified, herpes simplex virus, 24, 316		
picrotoxin, brain-specific binding (rat), 23, 326	nucleotide, for beta-adrenergic receptors (rat), 24, 341		
picrotoxinin, computer-assisted modeling, 23, 511	Serotonin		
presynaptic, in hippocampus, 24, 229	binding (mouse, rat), 23, 600		
serotonin, antagonist, 23, 594	uptake		
spare	neuronal, 23 , 607		
dynorphin potency, 23, 36	platelet, 23 , 607		
ileal (guinea pig), 23, 17	receptor, antagonist, 23, 594		
substance P	Serotonin ₁ , binding sites, 23, 594		
in ileum (guinea pig), 23 , 558 in salivary membranes (rat), 23 , 563	Sickle cell anemia, 2-imidazoline treatment (human), 23, 731 Sex differences, translocation receptors (rat), 24, 69		
inactivation with phenoxybenzamine (guinea pig), 23, 558	Sex differentiation, estrogen-binding proteins (rat), 24, 69		
2,3,7,8-tetrachlorodibenzo-p-dioxin in fibroblasts (mouse), 23, 198	Sodium		
translocation, in sex differentiation (rat), 24, 69	channel		
ventricular myocardial, for angiotensin II (rabbit), 24, 213	cerebral cortex (guinea pig), 23, 350		
Reconstitution, ion exchange, in brain (rat), 24, 251	effect of scorpion neurotoxins, 23, 519		
Reductase, aldose	efflux assay, acidic amino acid receptors in hippocampus, 24, 222		
inhibitor site, pharmacophor requirements, 24, 521	pump, inhibition by ouabain (bovine), 23, 681		
inhibitors, design, 24 , 521	Sodium nitroprusside		
Regulation	effects on coronary artery cells (bovine), 23, 424		
Ca ²⁺ -dependent cyclic AMP accumulation in pituitary tumor cells	potentiation (bovine), 23, 424		
(rat), 23, 399	Solubility		
cellular cyclic AMP, by opiates, 23, 26 genetic, coordinated (rat), 23, 779	deoxyhemoglobin S, 23, 100 [3H]flunitrazepam binding sites, effect of diazepam (rat), 23, 310		
prolactin (rat), 23, 576	Solubilization		
Regulator	benzodiazepine binding sites, with distilled water (rat), 23, 310		
deoxycytidylate deaminase, chemotherapeutic implications (human),	mu and kappa opiate receptor subtypes from brain (rat), 24, 203		
23, 159	Solvation		
enzymic, action (human), 23, 159	enzyme inhibition, nonspecific site of interaction, 24, 259		
Relative molecular mass, characteristics, spectrum, 23, 258	lipid bilayer, 24 , 259		
Relaxation, beta-adrenergic, in tracheal smooth muscle, 24, 235	Somatostatin		

adenylate cyclase inhibition, 24, 183	23, 159		
GTPase stimulation, 24, 183	specificity (human), 23, 159		
-induced stimulation of GTPase, 24, 183	4-hydroxylation of debrisoquine (human), 23, 474		
Sorbitol pathway, glucose metabolism, 24, 521	thymidine kinase, 24, 316		
Sparteine, oxidation (human), 23, 474	Supersensitivity, acid amino acid receptors in hippocampus, 24, 229		
Specificity, substrate (human), 23, 159	Synapse, muscarinic cholinergic, 24, 1		
4-hydroxylation of debrisoquine (human), 23, 474	Synaptic membrane, striatal		
Spectral property, neocarzinostatin chromophore, 23, 500 Sperm, adenylate cyclase, effect of forskolin, 24, 42	adenylate cyclase activity (rat), 23, 393		
Spin label, in study of ethanol tolerance (mouse), 23, 86	muscarinic receptors (rat), 24 , 380 Synaptic vesicle		
Spiroperidol, ³ H-labeled	acetylcholine transport (ray), 24, 48		
binding on intact cells (bovine), 23, 295	cholinergic (ray), 24, 48, 55		
in striatum (rat), 23 , 303	Synaptosomal vesicles, in brain (rat), 24, 251		
temperature dependency (rat), 23, 303	Synergism, summation of inhibitory effects, 24, 30		
Spleen, lymphocytes, 2'-deoxycoformycin toxicity (mouse), 23, 165	Synthesis		
Splenocyte, interaction of metal-complexing compounds, 23, 698	DNA, inhibition, 23, 698		
Stereoselectivity, oxotremorine analogues, for ileal muscarinic recep-	liver proteins, effect of halothane (rat), 24, 277		
tors (guinea pig), 23, 17	prostaglandin, effect of cannabinoids (human), 23, 121		
Stereospecificity, gelation inhibitors, 23, 100			
Steroid activation of monooxygenases (rat), 24, 137	T		
glucocorticoid, effect on cultured fibroblasts, 23, 648	Torget size neurotronomitton recenters (des human) 94 10		
hormone, action (rat), 23, 779	Target size, neurotransmitter receptors (dog, human), 24, 10 Temperature		
-nitrogen mustard, cytotoxicity, 24, 324	dependence		
Steroidogenesis, adrenal, inhibition, 23, 743	agonist binding, 24, 392		
Stimulation	[³ H]mepyramine binding, 23, 60		
ionic, cellular (bovine), 23, 671	effect on dextromethorphan binding (guinea pig), 23, 619		
metabolic, cellular (bovine), 23, 671	effect on [3H]spiroperidol binding (rat), 23, 303		
metabolism, pituitary GH ₃ cells, 24, 189	Testis, adenylate cyclase, effect of forskolin, 24, 42		
muscarinic, cyclic GMP, 24, 1	Tetrabenazine, binding, chromaffin granules (bovine), 23, 431		
somatostatin-induced, GTPase, 24, 183	2,3,7,8-Tetrachlorodibenzo-p-dioxin, receptor in fibroblasts (mouse),		
Striatum	23, 198		
dopamine receptor binding (rat), 23, 303	Tetrahydrobiopterin		
muscarinic receptors, coupling to adenylate cyclase, 24, 380	biosynthesis, 24, 103		
synaptic membranes	folate antagonists, 24, 103		
adenylate cyclase activity (rat), 23, 393	Tetrahydrofolate, hepatic, regulation (rat), 23, 724		
muscarinic receptors (rat), 24, 380	Tetrahydropterin, cofactor in tyrosine hydroxylation (bovine), 23, 104		
Structure neocarzinostatin chromophore, 23, 500	Tetrahydrotrazodone		
requirements for drug binding on human serum albumin, 24, 458	binding sites, 23 , 594 ³ H-labeled, binding, 23 , 594		
Structure-activity relationship	Tetramethylammonium ion, electron distribution, 24, 443		
ansamycins, 23, 133	Tetraphenylborate, effect on acetylcholine transport (ray), 24, 55		
cholinesterase inhibitors, 24, 436	Thalamus		
3-dimensional, in aminoglycoside antibiotics, 23, 127	kappa opiate agonists (rabbit), 24, 23		
human serum albumin site II, 24, 458	membranes (rabbit), 24, 23		
in interactions of alkoxymethylenedioxybenzene derivatives (rat), 24,	Thioacetamide S-oxide, metabolism (rat), 23, 219		
129	Thiol		
induction (rat), 24 , 129	methylation, 24, 471		
oxotremorine analogues, 23, 17	nonprotein depletion (schistosome), 24, 291		
quantitative	Thiopurine methyltransferase		
enzyme inhibition, 23, 213	action, 24, 471		
study, inhibition of microsomal p-hydroxylation, 23, 213	effect of benzoic acid derivatives, 24, 471		
Stypoldione	Thymidine kinase		
effect on embryonic cell cycle progression (sea urchin), 24, 500 effect on embryonic cell division (sea urchin), 24, 500	effects of 5'-amino-5'deoxythymidine, 23, 709 herpes simplex virus, 24, 316		
effect on embryonic DNA and protein synthesis (sea urchin), 24, 500	preferential inhibition, 24, 90		
inhibition of brain microtubule assembly (bovine), 24, 493	substrate specificity, 24, 316		
Submaxillary gland, alpha ₁ -adrenergic receptor turnover (rat), 23, 282	Thymidylate kinase		
Substance P	effects of 5'-amino-5'-deoxythymidine, 23, 709		
analogues, dissociation constants (guinea pig), 23, 558	herpes simplex virus, 24, 316		
binding to salivary membranes (rat), 23, 563	Thyroid		
dissociation constant (guinea pig), 23, 558	hyperplasia		
in ileum (guinea pig), 23, 558	effect on enzymes (rat), 23, 641		
receptor	propylthiouracil-stimulated (rat), 23, 641		
dissociation constants in ileum (guinea pig), 23, 558	hypertrophy		
in salivary membranes (rat), 23, 563	effect on enzymes (rat), 23, 641		
inactivation with phenoxybenzamine (guinea pig), 23, 558	propylthiouracil-stimulated (rat), 23, 641		
Substrate deavycytidylate deaminase chemotheraneutic implications (human)	metabolism, effect of hypophysectomy (rat), 23, 641		

Thyrotropin-releasing hormone, in GH₃ cells, effect on Ca²⁺ and cyclic

Thyrotropin-releasing hormone, in GH ₃ cells, effect on Ca ²⁺ and cyclic	U		
AMP (rat), 23, 399	Uptake, 3-O-methyl-n-glucose, in isolated hepatocytes (rat), 23, 141		
Tiazofurin, see 2-β-D-Ribofuranosylthiazole-4-carboxamide	Uridine		
Timolol, interaction with membranes, 24, 259	analogues		
Tolbutamide, oxidation (human), 23, 474	transport in lymphoblastoid cells (human), 23, 153		
Tolerance, ethanol, synaptosomal plasma membranes (mouse), 23, 86	transport in lymphoblastoid cells (human), 23, 153		
Torpedo californica, electric organ, acetylcholine transport, 24, 48, 55			
Toxicity, see also Cytotoxicity, Hepatotoxicity	v		
cytological, α-1,3,5-triglycidyl-s-triazinetrione, 23, 182	·		
2'-deoxycoformycin, in spleen lymphocytes (mouse), 23, 165	Vas deferens		
hepatic, cocaine (mouse), 23, 482	alpha ₁ -adrenergic receptors (rat), 23, 359		
nitrous oxide (rat), 24, 124	contraction (rat), 23, 359		
Toxin	effects of apamine, methylene blue, and quinine (guinea pig), 23, 409		
cholera, effect on GTPase activity in striatal membranes (rat), 24,	effects of guanethidine (guinea pig), 23, 409		
380	Vasoactive intestinal peptide		
cobra α-, ¹²⁵ I-labeled, 23, 8	epithelial cell (rat), 23, 228		
Trachea, smooth muscle (bovine), 23, 665	modulation of adenylate cyclase in pituitary GH ₃ cells, 24, 189		
alpha-adrenergic receptors (dog), 23, 570	modulation of cyclic AMP in pituitary GH ₃ cells, 24, 189		
contraction (dog), 23, 570	modulation of prolactin secretion in pituitary GH ₃ cells, 23, 189		
myosin phosphorylation, 24, 235	Venom, scorpion, neurotoxins, 23, 519		
Translation in vitro, messenger RNA (human), 23, 540; 24, 509	Ventricle, myocardial receptor for angiotensin II (rabbit), 24, 213		
Transport	Vesicle		
acetylcholine	lipid, ionic permeability, 24, 270		
effect of tetraphenylborate (ray), 24, 55	synaptosomal, in brain (rat), 24, 251		
in synaptic vesicles (ray), 24, 48	Vinblastine, cellular accumulation (human), 24, 485		
anion	Vinca alkaloid		
inhibition (ray), 24, 55	cellular accumulation (human), 24, 485		
inhibitors, 23, 92	retention, energy-dependent (human), 24, 485		
axonal, beta-adrenergic receptors (rat), 24, 341	Virus, mammary tumor induction (mouse), 23, 779		
6-azauridine, in lymphoblastoid cells (human), 23, 153	Voltage-sensitive channel, cerebral cortex (guinea pig), 23, 350		
Ca ²⁺ , in brain (rat), 24 , 251	volungo-scientivo channon, corestan cortex (guinea pig/, 20, 000		
electron, enhanced (rat), 24, 137	****		
membrane (human), 23, 146	\mathbf{w}		
Na ⁺ , in brain (rat), 24 , 251	Water, solubility of [3H]flunitrazepam binding sites (rat), 23, 310		
nucleoside (human), 23, 146	aver, sorately of [12] rank autopain bulants blood (140), 20, 010		
heterogeneity in mammalian cells, 24, 479	X		
in lymphoblastoid cells (human), 23, 153	Α.		
mercuribenzenesulfonate inhibition, 24, 479	Xanthines, effect on coronary artery cells (bovine), 23, 424		
pH-dependent, in lymphoblastoid cells (human), 23, 153	X-ray		
uridine, in lymphoblastoid cells (human), 23, 153	cell survival after exposure, 24, 84		
Tremorolytic agents, stereoselectivity (guinea pig), 23, 17	crystallography, conformation of neuroleptics, 24, 243		
Trifluoperazine, antagonism, alpha ₁ -adrenergic effects, 23, 67	Xylene, induction of cytochrome P-450 isozyme (rat), 23, 265		
5-Trifluoromethyl-2'-deoxyuridine, phosphorylation, preferential inhi-	y,		
bition, 24 , 90	Y		
α -1,3,5-Triglycidyl-s-triazinetrione, antitumor and cytotoxic effects, 23,	-		
182	Yeast, growth inhibition, by aromatic heptaene macrolide antibiotics		
Triphenylmethylphosphonium, effect on binding and depolarization in	24, 270		
cerebral cortex (guinea pig), 23, 350	Yohimbine, ³ H-labeled		
Tumor	binding (rat), 23, 228		
mammary, virus induction (mouse), 23, 779	identification of $alpha_2$ -adrenergic receptor (rat), 23, 228		
pituitary	1.000 (1.00), as a second of the second of t		
cellular Ca ²⁺ metabolism (rat), 23, 399	7		
cellular cyclic AMP accumulation (rat), 23, 399	Z		
-promoting phorbol esters, 23, 703	Zinc		
Turnover, alpha ₁ -adrenergic receptor in submaxillary gland (rat), 23,	effect on monooxygenase activity (rat), 23, 467		
282	effect on NADPH oxidation (rat), 23, 467		
Tyrosine hydroxylase	growth inhibition, 24, 77		
dead-end and product inhibition (bovine), 23, 104	inhibition, in hepatic microsomes (rat), 23, 467		
steady-state kinetics (bovine), 23, 104	Zinterol, binding in heart (human), 24, 169, 174		
- · · · · · · · ·	,		

U.S. POSTAL BERVICE STATEMENT OF OWNERSHIP, MANAGEMENT AND CIRCULATION (Required by 39 U.S.C. 3885)					
1. TITLE OF PUBLICATION	A. PUBLICATION NO. 2. DATE OF FILING		2. DATE OF FILING		
Molecular Pharmacology	3 7 8 6 5 0	0 0	10/1/83		
3. FREQUENCY OF ISSUE	A. NO. OF ISSUES PUBLISHED ANNUALLY		ANNUAL SUBSCRIPTION		
Bi-monthly	6		titutional:\$140.		
4. COMPLETE MAILING ADDRESS OF KNOWN OFFICE OF PUBLICATION (Street	i, City, County, State and ZIP Code) (No	t printers)	· · · · · · · · · · · · · · · · · · ·		
9650 Rockville Pike, Bethesda, Maryland 2081	4				
S. COMPLETE MAILING ADDRESS OF THE HEADQUARTERS OR GENERAL BUS	INESS OFFICES OF THE PUBLISHERS	(Not printe	ora)		
9650 Rockville Pike, Bethesda, Maryland 2081	,				
6. FULL NAMES AND COMPLETE MAILING ADDRESS OF PUBLISHER, EDITOR,	AND MANAGING EDITOR (This Nem M	UST NOT	be blank)		
PUBLISHER (Name and Complete Mailing Address) The American Seciety for Pharmacology 9650	Poolari 11 o Pileo				
The American Society for Pharmacology 9650 Rockville Pike and Experimental Therapeutics Bethesda, Maryland 20814					
EDITOR (Name and Complete Mailing Address)	versity School of Medic	ine			
Department of Pharmacology Nashville, Term					
MANAGING EDITOR (Name and Complete Mailing Address) Kay A. Croker, Executive Officer		Rooks	ille Pike		
American Society for Pharmacology & Experiment					
7. OWNER (If owned by a corporation, its name and address must be stated and also immediately thereunder the names and addresses of stockholders owning or holding 1 percent or more of total amount of stock. If not owned by a corporation, the names and addresses of the individual owners must be given. If owned by a partnership or other unincorporated firm, its name and address, as well as that of each individual must be given. If the publication is published by a nonprofit organization, its name and address must be stated.) (Item must be completed)					
FULL NAME	COMPLETE MA	LING ADI	PRESS		
American Society for Pharmacology and Experimental Therapeutics	9650 Rockville Pike	0017.			
and experimental inerapedities	Bethesda, Maryland 2	0814			
8. KNOWN BONDHOLDERS, MORTGAGEES, AND OTHER SECU	RITY HOLDERS OWNING OR HOLDING	1 PERCE	NT OR MORE OF		
TOTAL AMOUNT OF BONDS, MORTGAGES OR C					
FULL NAME	COMPLETE MAILING ADDRESS				
9. FOR COMPLETION BY NONPROFIT ORGANIZATIONS AUTHORIZED TO	AMAIL AT COSCIAL DATES (Badles	444.0. 6	AMM on the		
The purpose, function, and nonprofit status of this organization and the exemp					
(1) HAS NOT CHANGED DURING PRECEDING 12 MONTHS (2) HAS CHANGED DURING PRECEDING 12 MONTHS (If changed, publisher must submit explanation of change with this statement.)					
10. EXTENT AND NATURE OF CIRCULATION	AVERAGE NO. COPIES EACH ISSUE DURING PRECEDING 12 MONTHS	ACTU ISSUI	AL NO. COPIES OF SINGLE E PUBLISHED NEAREST TO FILING DATE		
A. TOTAL NO. COPIES (Not Proce Run)	2107		2100		
B. PAID CIRCULATION 1. SALES THROUGH DEALERS AND CARRIERS, STREET VENDORS AND COUNTER SALES	none		none		
2. MAIL SUBSCRIPTION	1521		1511		
C. TOTAL PAID CIRCULATION (Sum of 1081 and 1082)	1521		1511		
D. FREE DISTRIBUTION BY MAIL, CARRIER OR OTHER MEANS SAMPLES, COMPLIMENTARY, AND OTHER FREE COPIES	77		68		
E. TOTAL DISTRIBUTION (Sum of C and D)	1598 1579		1579		
F. COPIES NOT DISTRIBUTED 1. OFFICE USE, LETT OVER, UNACCOUNTED, SPOILED APTER PRINTING	509		521		
2. RETURN FROM NEWS AGENTS	none		none		
Q. TOTAL (Sum of E, F1 and 2 - should equal net press run shown in A)	2107		2100		
11. I certify that the statements made by me above are correct and complete SIGNAYUNE AND TITLE OF EDITOR, PUBLISHER, BUSINESS MANUGER, OR OWNER Executive Officer					

PS Form July 1981 3526

NOTICE

Molecular Pharmacology is no longer considering manuscripts for publication as "Short Communications."

Notice to Authors Wishing to Submit Manuscripts to

Journal of Pharmacology and Experimental Therapeutics

Molecular Pharmacology

Drug Metabolism and Disposition

The expenses associated with the review of manuscripts submitted to those ASPETsponsored journals that are devoted to publishing original research articles have escalated dramatically in recent years because of ever-increasing costs of postage, supplies, and other office expenses, and the growing number of manuscripts submitted for publication. In order to continue to offer authors the opportunity to publish their original research in our critically reviewed, well-edited, and widely respected journals, it has become necessary for ASPET to follow the example of several other scientific societies which have instituted a uniform manuscript handling fee for each of its journals that publishes original research reports. Therefore, all manuscripts received in the editorial office on or after July 1, 1983, must be accompanied either by a check for \$30.00 (in U. S. funds payable to ASPET) or by a validated purchase order from the authors' institution. The review process for submitted manuscripts will be delayed until the manuscript handling fee or purchase order is received in the appropriate Editor's office. We regret the necessity of instituting a manuscript handling fee. The Board of Publications Trustees has concluded, however, that this charge represents the fairest and most appropriate manner to defray the costs related to the review of submitted manuscripts. If submission of the manuscript handling fee entails a personal financial hardship to the author(s), the fee will be waived. In that event, the author(s) should submit a request for waiver of the fee when the manuscript is submitted.

INSTRUCTIONS TO AUTHORS

Molecular Pharmacology will publish the results of investigations that contribute significant new information on drug action or selective toxicity at the molecular level. The term "drug" is defined broadly to include chemicals that selectively modify biological function.

Suitable papers are those that describe applications of the methods of biochemistry, biophysics, genetics, and molecular biology to problems in pharmacology or toxicology. Also suitable are reports of fundamental investigations which, although not concerned directly with drugs, nevertheless provide an immediate basis for further study of the molecular mechanism of drug action. Observations of phenomena that shed no light upon underlying molecular interactions are not appropriate for publication. Comparative studies, such as those involving drug-receptor or drug-enzyme interactions that already have been well characterized in other types of cells or tissues, also are inappropriate for publication unless they contribute significant new insight into mechanisms.

Specific areas of interest include: stereochemical, electronic, and other parameters of drug architecture; conformational analysis of receptors and their function; drug-enzyme and other interactions between drugs and macromolecules; drug effects upon gene replication and transcription and on protein synthesis; mechanism of action of antibiotics and other growth-inhibitory drugs; induction by drugs of changes in macromolecular structure or allosteric transitions; drug-induced alterations in metabolic pathways; effects of hormones and other drugs on cellular regulatory mechanisms; chemical mutagenesis, carcinogenesis, and teratogenesis; pharmacogenetics, idiosyncrasies, and drug allergies; selective toxicity in a single organism or in different species; drug actions on properties and functions of membranes; mechanisms of drug metabolism; distribution and transport of drug molecules between biological compartments.

Page charges. Authors will be billed at the rate of \$30.00 per page after the paper has been published. It is expected that the page charge will be paid if funds are available for that purpose from the author's institution or from the sponsor of this research. Payment of the charge is not a condition for publication. In case of personal financial hardship, page charges will be waived. Neither the editors nor the reviewers will have knowledge as to who has paid the charge, and this payment always will be considered entirely voluntary.

Submission of manuscript. Manuscripts are published in English only and should be sent to Dr. Joel Hardman, Editor, Molecular Pharmacology, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, U. S. A.

The expenses associated with the review of manuscripts submitted to Molecular Pharmacology and other ASPET-sponsored journals that are devoted to publishing original research articles have escalated dramatically in recent years because of ever-increasing costs of postage, supplies, and other office expenses, and the growing number of manuscripts submitted for publication. Thus, it has become necessary for ASPET to follow the example of several other scientific societies which have instituted uniform manuscript handling fees. Therefore, all manuscripts must be accompanied either by a check for \$30 (in U. S. funds payable to ASPET) or by a validated purchase order from the authors' institution. The review process for submitted manuscripts will be delayed until the manuscript handling fee or purchase order is received in the Editor's office. If submission of the manuscript handling fee entails a personal financial hardship to the author(s), the fee will be waived. In that event, the author(s) should submit a request for waiver of the fee when the manuscript is submitted.

Manuscripts should be typewritten double-spaced with ample margins on one side of the paper, $8\% \times 11$ inches (ca. 215×280 mm). Submit four complete copies of the manuscript and four copies of each figure, plus one original drawing or photograph of each figure. Each half-tone figure requires four original drawings or photographs. All pages should be numbered consecutively beginning with the title page. Limit your reference listings to the minimal number required to document the manuscript adequately. In most instances 30 references or fewer should suffice.

Under usual circumstances reviewers will be instructed to return only their comments to the editorial office and to destroy manuscripts after a final decision on their acceptability has been made. Original figures and single copies of manuscripts not accepted for publication will be returned to the authors upon request.

It is understood that the manuscripts and the results they contain will not have been published previously and are not being submitted elsewhere. Manuscripts are accepted for review with the understanding that all persons listed as authors have given their approval for the submission of the paper; further, that any person cited as a source of personal communications has approved such citation. Written authorization may be required at the Editor's discretion. Articles and any other material published in *Molecular Pharmacology* represent the opinions of the author(s) and should not be construed to reflect the opinions of the Editor(s) and the Publisher. If and when a manuscript is published, it will become the sole property of the Journal.

Authors submitting a manuscript do so on the understanding that if it is accepted for publication, copyright in the article, including the right to reproduce the article in all forms and media, shall be assigned exclusively to the Society for Pharmacology and Experimental Therapeutics. No reasonable request by the author for permission to reproduce any of his or her contributions to the journal will be refused.

Organization and style of manuscripts. The policy of the Journal is to allow authors maximum freedom in organizing and presenting their material, and in expressing their ideas, provided only that clarity and conciseness are achieved. For most manuscripts, the most suitable format is: (1) Summary, (2) Introduction, (3) Materials and Methods, (4) Results, and (5) Discussion.

Certain conventions must be observed. Chemical and mathematical formulas and abbreviations should follow the *Instructions to Authors of the Journal of Biological Chemistry* (Vol. 258, pp. 1-11, January 10, 1983). Drugs must be referred to by their generic or chemical names throughout the text, but may be identified by trade name in parentheses or a footnote. The systematic name and number given by the Commission on Enzymes of the International Union of Biochemistry should be included for each enzyme of importance in a paper, at the point in the Summary or Introduction where the enzyme is first mentioned. The use of abbreviations should be minimized and abbreviations avoided in the Summary. All essential abbreviations should be defined in a single footnote when first introduced. Abbreviations of journal names should conform to the style of *Biological Abstracts*. References to papers that

have been accepted for publication, but have not appeared, should be cited like other references with the abbreviated name of the journal followed by the words "in press." Copies of such papers should be sent whenever the findings described in them have a direct bearing on the paper being submitted for publication. "Personal Communications" and "Unpublished Observations" should be cited in footnotes to the text and should not be included in the reference list.

A manuscript should include the following, in the order listed: (1) Title. Numbered footnotes to the title should be avoided; acknowledgment of financial support should be given in an unnumbered footnote to the title. (2) Names of authors, their laboratory and institution. (3) A running title, not exceeding 60 characters and spaces. (4) Summary. (5) Text. Footnotes should be referred to by superscript numbers and references by numbers in parentheses. (6) References, numbered according to order of citation in the text, including title and complete pagination. Examples: 1. Goren, J. H., L. G. Bauce, and W. Vale. Forces and structural limitations of binding of thyrotropin-releasing receptor: the pyroglutamic acid moiety. Mol. Pharmacol. 13:606-614 (1977). 2. Sandler, M. Variations in monoamine oxidase activity in some human disease states. in Monoamine Oxidase and Its Inhibition. Ciba Foundation Symposium 39. Elsevier, Amsterdam, 327-340 (1976). (7). Footnotes, numbered according to order of appearance in the text. (8) Tables. (9) Figures. (10) Legends to figures. (11) Name and address of person to receive galley proof.

Tables. These should be numbered with arabic numerals and designed to fit the single-column width of the full-page width. Every table should have an explanatory title and sufficient experimental detail in a paragraph following the title to be intelligible without references to the text (unless the procedure is given in the Methods

section, or under another table or figure). Footnotes to tables should appear beneath the tables themselves and should be designated by lower-case italic superscript letters, a, b, c, etc.

Figures. These should be numbered with arabic numerals. Each of the four manuscript copies should contain all of the figures. Only the original set need be of quality suitable for reproduction except in the case of half-tones, which require four sets of photographs or original drawings. These should be unmounted glossy photographs (or original India-ink drawings). Usually figures will be reduced to one column width (85 mm) and all numbers after such reduction should be at least 1.5 mm high. The figures must be ready, in all respects, for direct reproduction: no lettering or other art work will be done by the publisher. If symbols are not explained on the face of the figure, only standard characters, of which the printer has type, may be used $(\times, \bigcirc, \bullet, \square, \triangle, \triangle, \bullet)$. The back of each photograph should bear its number, and the legend TOP at the appropriate edge. The list of legends for the figures should give captions and sufficient experimental detail, as required for tables.

Galley proof. The cost of all changes on galley proof, other than printer's errors, will be charged to authors. The Editors are very much interested in having accepted contributions appear in the earliest possible issue of the Journal, and therefore request that galley proof be returned within 24 hours after its receipt. In exceptional cases, a "Note added in proof" may be attached and will be published if the Editor approves.

Reprints and page charges. An order form for reprints as well as information on the estimation of page charges will be mailed with galley proof. Please direct questions on reprints, page charges, or other business matters to Kay Croker, Executive Officer, American Society for Pharmacology and Experimental Therapeutics, 9650 Rockville Pike, Bethesda, Md. 20814. Telephone (301)530-7060.